
DEEP LEARNING
THE SOLUTION TO ALL MY PROBLEMS… RIGHT?

Corentin Lapeyre | COOP/CSG | 2017-06-27
1

The hype

2

The hype

Artificial Intelligence (AI) and specifically Deep
Learning (DL) are exploding

Forrester: 16% of current US jobs replaced by 2025
2

Deep Learning everywhere

3

Deep Learning for everyone

4

Deep Learning for everyone

4

Deep Learning for everyone

4

Deep Learning for everyone

4

Deep Learning for everyone

4

Everybody wants you to
use their framework

New stuff?

1940 1960

5

Cybernetics

New stuff?

1940 1960

perceptron

5

Cybernetics

New stuff?

1940 1960

perceptron cognitron
neocognitron

5

Cybernetics

1980 1990

Connectionism

New stuff?

1940 1960

Deep
Learning

2006

« Deep Learning » is not a new idea. It’s a new set of
techniques, combined with increased computational power

perceptron cognitron
neocognitron

deep belief
network

5

Cybernetics

1980 1990

Connectionism

0

7,25

14,5

21,75

29

2010 2011 2012 2013 2014 2015

25,8
28,2

But the hype is new

Rule
based

ImageNet challenge winner error rate (%)

6

0

7,25

14,5

21,75

29

2010 2011 2012 2013 2014 2015

25,8
28,2

But the hype is new

Rule
based

ImageNet challenge winner error rate (%)

Deep
learning

0

7

14

21

28

2010 2011 2012 2013 2014 2015

16,4

6

0

7,25

14,5

21,75

29

2010 2011 2012 2013 2014 2015

25,8
28,2

But the hype is new

Rule
based

ImageNet challenge winner error rate (%)

Deep
learning

0

7

14

21

28

2010 2011 2012 2013 2014 2015

16,4

6

0

7

14

21

28

2010 2011 2012 2013 2014 2015

3,57
6,7

11,7
16,4

0

7,25

14,5

21,75

29

2010 2011 2012 2013 2014 2015

25,8
28,2

But the hype is new

Rule
based

Deep learning became the superstar
in 2012. Since then, nothing

compares to it for this challenge

ImageNet challenge winner error rate (%)

Deep
learning

0

7

14

21

28

2010 2011 2012 2013 2014 2015

16,4

6

0

7

14

21

28

2010 2011 2012 2013 2014 2015

3,57
6,7

11,7
16,4

0

7,25

14,5

21,75

29

2010 2011 2012 2013 2014 2015

25,8
28,2

But the hype is new

Rule
based

Deep learning became the superstar
in 2012. Since then, nothing

compares to it for this challenge

ImageNet challenge winner error rate (%)

Same happened to the
PASCAL Visual Object
Classes challenge, etc…

Deep
learning

0

7

14

21

28

2010 2011 2012 2013 2014 2015

16,4

6

0

7

14

21

28

2010 2011 2012 2013 2014 2015

3,57
6,7

11,7
16,4

WHAT THE HECK IS DEEP
LEARNING?
I DID A REGRESSION ONCE. IT’S DEEP LEARNING, RIGHT?

7

Machine / Deep learning
In

pu
t

Hand designed program Rule based systems

8

Machine / Deep learning
In

pu
t

Hand designed program Rule based systems

Hand designed
features Machine learningMapping

from features

8

Features Mapping
from features

Representation
learning

Machine / Deep learning
In

pu
t

Hand designed program Rule based systems

Hand designed
features Machine learningMapping

from features

8

Features Mapping
from features

Representation
learning

Machine / Deep learning
In

pu
t

Hand designed program Rule based systems

Deep
learning

Simple
Features

More abstract
features

Mapping
from features

Hand designed
features Machine learningMapping

from features

Deep learning is a subset of Machine learning
8

Representation
learning

Machine / Deep learning

Rule based systems

Deep learning

Machine learning

9

Representation
learning

Machine / Deep learning

Rule based systems

Deep learning

Machine learning

y = 3x2

y = ax

b + c

y =
NX

i=0

aix
i

9

Representation
learning

Machine / Deep learning

Rule based systems

Deep learning

Machine learning

y = 3x2

y = ax

b + c

y =
NX

i=0

aix
i

y = 3x2

y = ax

b + c

y =
NX

i=0

aix
i

9

Representation
learning

Machine / Deep learning

Rule based systems

Deep learning

Machine learning

y = 3x2

y = ax

b + c

y =
NX

i=0

aix
i

y = 3x2

y = ax

b + c

y =
NX

i=0

aix
i

y = 3x2

y = ax

b + c

y =
NX

i=0

aix
i

9

Representation
learning

Machine / Deep learning

Rule based systems

Deep learning

Machine learning

y = 3x2

y = ax

b + c

y =
NX

i=0

aix
i

y = 3x2

y = ax

b + c

y =
NX

i=0

aix
i

y = 3x2

y = ax

b + c

y =
NX

i=0

aix
i

In Deep learning you learn everything.

This is very powerful, but can be very inefficient.

(N very big)

9

Objective: generalization

10

Objective: generalization
Machine learning strategy:

observe the training data to learn
the features

not learn the noise

10

Objective: generalization
Machine learning strategy:

observe the training data to learn
the features

not learn the noise

generalize well to the test data
(good prediction)

10

Objective: generalization
Machine learning strategy:

observe the training data to learn
the features

not learn the noise

generalize well to the test data
(good prediction)

10

Data Train Test

Machine learning

11

Data Train Test

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

Machine learning

11

Data Train Test

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

Function to learnx

Machine learning

11

Data Train Test

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

Function to learnx y’ ~ y

Machine learning

11

Data Train Test

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

Function to learnx y’ ~ y |y’- y| = train error

Machine learning

11

Data Train Test

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

Function to learnx y’ ~ y |y’- y| = train error

Function to learnx y’ ~ y |y’- y| = test error

Machine learning

11

Data Train Test

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

Function to learnx y’ ~ y |y’- y| = train error

Function to learnx y’ ~ y |y’- y| = test error

Both
should be
minimal

Machine learning

11

Data Train Test

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

Function to learnx y’ ~ y |y’- y| = train error

Function to learnx y’ ~ y |y’- y| = test error

Learned functionx yNew Data

Both
should be
minimal

Under / Overfitting
y

x0

12

Under / Overfitting

Human fitting :
 « Hey, this looks like a 2nd order polynomial »

y

x0

12

Under / Overfitting

Human fitting :
 « Hey, this looks like a 2nd order polynomial »

CHAPTER 5. MACHINE LEARNING BASICS

parameters than training examples. We have little chance of choosing a solution
that generalizes well when so many wildly different solutions exist. In this example,
the quadratic model is perfectly matched to the true structure of the task so it
generalizes well to new data.

�
�

�

�������		��

�
�

�

����
����	��������	�

�
�

�

������		��

Figure 5.2: We fit three models to this example training set. The training data was
generated synthetically, by randomly samplingx values and choosing y deterministically
by evaluating a quadratic function. (Left) A linear function fit to the data suffers from
underfitting—it cannot capture the curvature that is present in the data. () ACenter
quadratic function fit to the data generalizes well to unseen points. It does not suffer from
a significant amount of overfitting or underfitting. () A polynomial of degree 9 fit toRight
the data suffers from overfitting. Here we used the Moore-Penrose pseudoinverse to solve
the underdetermined normal equations. The solution passes through all of the training
points exactly, but we have not been lucky enough for it to extract the correct structure.
It now has a deep valley in between two training points that does not appear in the true
underlying function. It also increases sharply on the left side of the data, while the true
function decreases in this area.

So far we have only described changing a model’s capacity by changing the
number of input features it has (and simultaneously adding new parameters
associated with those features). There are in fact many ways of changing a model’s
capacity. Capacity is not determined only by the choice of model. The model
specifies which family of functions the learning algorithm can choose from when
varying the parameters in order to reduce a training objective. This is called the
representational capacity of the model. In many cases, finding the best function
within this family is a very difficult optimization problem. In practice, the learning

algorithm does not actually find the best function, but merely one that significantly
reduces the training error. These additional limitations, such as the imperfection

113

Learned fitting :

N = 1 N = 2 N = Npts

y

x0

12

Under / Overfitting

Human fitting :
 « Hey, this looks like a 2nd order polynomial »

CHAPTER 5. MACHINE LEARNING BASICS

parameters than training examples. We have little chance of choosing a solution
that generalizes well when so many wildly different solutions exist. In this example,
the quadratic model is perfectly matched to the true structure of the task so it
generalizes well to new data.

�
�

�

�������		��

�
�

�

����
����	��������	�

�
�

�

������		��

Figure 5.2: We fit three models to this example training set. The training data was
generated synthetically, by randomly samplingx values and choosing y deterministically
by evaluating a quadratic function. (Left) A linear function fit to the data suffers from
underfitting—it cannot capture the curvature that is present in the data. () ACenter
quadratic function fit to the data generalizes well to unseen points. It does not suffer from
a significant amount of overfitting or underfitting. () A polynomial of degree 9 fit toRight
the data suffers from overfitting. Here we used the Moore-Penrose pseudoinverse to solve
the underdetermined normal equations. The solution passes through all of the training
points exactly, but we have not been lucky enough for it to extract the correct structure.
It now has a deep valley in between two training points that does not appear in the true
underlying function. It also increases sharply on the left side of the data, while the true
function decreases in this area.

So far we have only described changing a model’s capacity by changing the
number of input features it has (and simultaneously adding new parameters
associated with those features). There are in fact many ways of changing a model’s
capacity. Capacity is not determined only by the choice of model. The model
specifies which family of functions the learning algorithm can choose from when
varying the parameters in order to reduce a training objective. This is called the
representational capacity of the model. In many cases, finding the best function
within this family is a very difficult optimization problem. In practice, the learning

algorithm does not actually find the best function, but merely one that significantly
reduces the training error. These additional limitations, such as the imperfection

113

Learned fitting :

N = 1 N = 2 N = Npts

y

x0

12

Under / Overfitting

Human fitting :
 « Hey, this looks like a 2nd order polynomial »

CHAPTER 5. MACHINE LEARNING BASICS

parameters than training examples. We have little chance of choosing a solution
that generalizes well when so many wildly different solutions exist. In this example,
the quadratic model is perfectly matched to the true structure of the task so it
generalizes well to new data.

�
�

�

�������		��

�
�

�

����
����	��������	�

�
�

�

������		��

Figure 5.2: We fit three models to this example training set. The training data was
generated synthetically, by randomly samplingx values and choosing y deterministically
by evaluating a quadratic function. (Left) A linear function fit to the data suffers from
underfitting—it cannot capture the curvature that is present in the data. () ACenter
quadratic function fit to the data generalizes well to unseen points. It does not suffer from
a significant amount of overfitting or underfitting. () A polynomial of degree 9 fit toRight
the data suffers from overfitting. Here we used the Moore-Penrose pseudoinverse to solve
the underdetermined normal equations. The solution passes through all of the training
points exactly, but we have not been lucky enough for it to extract the correct structure.
It now has a deep valley in between two training points that does not appear in the true
underlying function. It also increases sharply on the left side of the data, while the true
function decreases in this area.

So far we have only described changing a model’s capacity by changing the
number of input features it has (and simultaneously adding new parameters
associated with those features). There are in fact many ways of changing a model’s
capacity. Capacity is not determined only by the choice of model. The model
specifies which family of functions the learning algorithm can choose from when
varying the parameters in order to reduce a training objective. This is called the
representational capacity of the model. In many cases, finding the best function
within this family is a very difficult optimization problem. In practice, the learning

algorithm does not actually find the best function, but merely one that significantly
reduces the training error. These additional limitations, such as the imperfection

113

Learned fitting :

N = 1 N = 2 N = Npts

y

x0

12

Under / Overfitting

Human fitting :
 « Hey, this looks like a 2nd order polynomial »

CHAPTER 5. MACHINE LEARNING BASICS

parameters than training examples. We have little chance of choosing a solution
that generalizes well when so many wildly different solutions exist. In this example,
the quadratic model is perfectly matched to the true structure of the task so it
generalizes well to new data.

�
�

�

�������		��

�
�

�

����
����	��������	�

�
�

�

������		��

Figure 5.2: We fit three models to this example training set. The training data was
generated synthetically, by randomly samplingx values and choosing y deterministically
by evaluating a quadratic function. (Left) A linear function fit to the data suffers from
underfitting—it cannot capture the curvature that is present in the data. () ACenter
quadratic function fit to the data generalizes well to unseen points. It does not suffer from
a significant amount of overfitting or underfitting. () A polynomial of degree 9 fit toRight
the data suffers from overfitting. Here we used the Moore-Penrose pseudoinverse to solve
the underdetermined normal equations. The solution passes through all of the training
points exactly, but we have not been lucky enough for it to extract the correct structure.
It now has a deep valley in between two training points that does not appear in the true
underlying function. It also increases sharply on the left side of the data, while the true
function decreases in this area.

So far we have only described changing a model’s capacity by changing the
number of input features it has (and simultaneously adding new parameters
associated with those features). There are in fact many ways of changing a model’s
capacity. Capacity is not determined only by the choice of model. The model
specifies which family of functions the learning algorithm can choose from when
varying the parameters in order to reduce a training objective. This is called the
representational capacity of the model. In many cases, finding the best function
within this family is a very difficult optimization problem. In practice, the learning

algorithm does not actually find the best function, but merely one that significantly
reduces the training error. These additional limitations, such as the imperfection

113

Learned fitting :

N = 1 N = 2 N = Npts

y

x0

12

Under / Overfitting

Human fitting :
 « Hey, this looks like a 2nd order polynomial »

CHAPTER 5. MACHINE LEARNING BASICS

parameters than training examples. We have little chance of choosing a solution
that generalizes well when so many wildly different solutions exist. In this example,
the quadratic model is perfectly matched to the true structure of the task so it
generalizes well to new data.

�
�

�

�������		��

�
�

�

����
����	��������	�

�
�

�

������		��

Figure 5.2: We fit three models to this example training set. The training data was
generated synthetically, by randomly samplingx values and choosing y deterministically
by evaluating a quadratic function. (Left) A linear function fit to the data suffers from
underfitting—it cannot capture the curvature that is present in the data. () ACenter
quadratic function fit to the data generalizes well to unseen points. It does not suffer from
a significant amount of overfitting or underfitting. () A polynomial of degree 9 fit toRight
the data suffers from overfitting. Here we used the Moore-Penrose pseudoinverse to solve
the underdetermined normal equations. The solution passes through all of the training
points exactly, but we have not been lucky enough for it to extract the correct structure.
It now has a deep valley in between two training points that does not appear in the true
underlying function. It also increases sharply on the left side of the data, while the true
function decreases in this area.

So far we have only described changing a model’s capacity by changing the
number of input features it has (and simultaneously adding new parameters
associated with those features). There are in fact many ways of changing a model’s
capacity. Capacity is not determined only by the choice of model. The model
specifies which family of functions the learning algorithm can choose from when
varying the parameters in order to reduce a training objective. This is called the
representational capacity of the model. In many cases, finding the best function
within this family is a very difficult optimization problem. In practice, the learning

algorithm does not actually find the best function, but merely one that significantly
reduces the training error. These additional limitations, such as the imperfection

113

Learned fitting :

N = 1 N = 2 N = Npts

y

x0

Underfitting

12

Under / Overfitting

Human fitting :
 « Hey, this looks like a 2nd order polynomial »

CHAPTER 5. MACHINE LEARNING BASICS

parameters than training examples. We have little chance of choosing a solution
that generalizes well when so many wildly different solutions exist. In this example,
the quadratic model is perfectly matched to the true structure of the task so it
generalizes well to new data.

�
�

�

�������		��

�
�

�

����
����	��������	�

�
�

�

������		��

Figure 5.2: We fit three models to this example training set. The training data was
generated synthetically, by randomly samplingx values and choosing y deterministically
by evaluating a quadratic function. (Left) A linear function fit to the data suffers from
underfitting—it cannot capture the curvature that is present in the data. () ACenter
quadratic function fit to the data generalizes well to unseen points. It does not suffer from
a significant amount of overfitting or underfitting. () A polynomial of degree 9 fit toRight
the data suffers from overfitting. Here we used the Moore-Penrose pseudoinverse to solve
the underdetermined normal equations. The solution passes through all of the training
points exactly, but we have not been lucky enough for it to extract the correct structure.
It now has a deep valley in between two training points that does not appear in the true
underlying function. It also increases sharply on the left side of the data, while the true
function decreases in this area.

So far we have only described changing a model’s capacity by changing the
number of input features it has (and simultaneously adding new parameters
associated with those features). There are in fact many ways of changing a model’s
capacity. Capacity is not determined only by the choice of model. The model
specifies which family of functions the learning algorithm can choose from when
varying the parameters in order to reduce a training objective. This is called the
representational capacity of the model. In many cases, finding the best function
within this family is a very difficult optimization problem. In practice, the learning

algorithm does not actually find the best function, but merely one that significantly
reduces the training error. These additional limitations, such as the imperfection

113

Learned fitting :

N = 1 N = 2 N = Npts

y

x0

Underfitting Overfitting

12

CHAPTER 5. MACHINE LEARNING BASICS

parameters than training examples. We have little chance of choosing a solution
that generalizes well when so many wildly different solutions exist. In this example,
the quadratic model is perfectly matched to the true structure of the task so it
generalizes well to new data.

�
�

�

�������		��

�
�

�

����
����	��������	�

�
�

�

������		��

Figure 5.2: We fit three models to this example training set. The training data was
generated synthetically, by randomly samplingx values and choosing y deterministically
by evaluating a quadratic function. (Left) A linear function fit to the data suffers from
underfitting—it cannot capture the curvature that is present in the data. () ACenter
quadratic function fit to the data generalizes well to unseen points. It does not suffer from
a significant amount of overfitting or underfitting. () A polynomial of degree 9 fit toRight
the data suffers from overfitting. Here we used the Moore-Penrose pseudoinverse to solve
the underdetermined normal equations. The solution passes through all of the training
points exactly, but we have not been lucky enough for it to extract the correct structure.
It now has a deep valley in between two training points that does not appear in the true
underlying function. It also increases sharply on the left side of the data, while the true
function decreases in this area.

So far we have only described changing a model’s capacity by changing the
number of input features it has (and simultaneously adding new parameters
associated with those features). There are in fact many ways of changing a model’s
capacity. Capacity is not determined only by the choice of model. The model
specifies which family of functions the learning algorithm can choose from when
varying the parameters in order to reduce a training objective. This is called the
representational capacity of the model. In many cases, finding the best function
within this family is a very difficult optimization problem. In practice, the learning

algorithm does not actually find the best function, but merely one that significantly
reduces the training error. These additional limitations, such as the imperfection

113

Under / Overfitting

The order N is called the
capacity

13

CHAPTER 5. MACHINE LEARNING BASICS

parameters than training examples. We have little chance of choosing a solution
that generalizes well when so many wildly different solutions exist. In this example,
the quadratic model is perfectly matched to the true structure of the task so it
generalizes well to new data.

�
�

�

�������		��

�
�

�

����
����	��������	�

�
�

�

������		��

Figure 5.2: We fit three models to this example training set. The training data was
generated synthetically, by randomly samplingx values and choosing y deterministically
by evaluating a quadratic function. (Left) A linear function fit to the data suffers from
underfitting—it cannot capture the curvature that is present in the data. () ACenter
quadratic function fit to the data generalizes well to unseen points. It does not suffer from
a significant amount of overfitting or underfitting. () A polynomial of degree 9 fit toRight
the data suffers from overfitting. Here we used the Moore-Penrose pseudoinverse to solve
the underdetermined normal equations. The solution passes through all of the training
points exactly, but we have not been lucky enough for it to extract the correct structure.
It now has a deep valley in between two training points that does not appear in the true
underlying function. It also increases sharply on the left side of the data, while the true
function decreases in this area.

So far we have only described changing a model’s capacity by changing the
number of input features it has (and simultaneously adding new parameters
associated with those features). There are in fact many ways of changing a model’s
capacity. Capacity is not determined only by the choice of model. The model
specifies which family of functions the learning algorithm can choose from when
varying the parameters in order to reduce a training objective. This is called the
representational capacity of the model. In many cases, finding the best function
within this family is a very difficult optimization problem. In practice, the learning

algorithm does not actually find the best function, but merely one that significantly
reduces the training error. These additional limitations, such as the imperfection

113

Under / Overfitting

The order N is called the
capacity

Optimal

13

CHAPTER 5. MACHINE LEARNING BASICS

parameters than training examples. We have little chance of choosing a solution
that generalizes well when so many wildly different solutions exist. In this example,
the quadratic model is perfectly matched to the true structure of the task so it
generalizes well to new data.

�
�

�

�������		��

�
�

�

����
����	��������	�

�
�

�

������		��

Figure 5.2: We fit three models to this example training set. The training data was
generated synthetically, by randomly samplingx values and choosing y deterministically
by evaluating a quadratic function. (Left) A linear function fit to the data suffers from
underfitting—it cannot capture the curvature that is present in the data. () ACenter
quadratic function fit to the data generalizes well to unseen points. It does not suffer from
a significant amount of overfitting or underfitting. () A polynomial of degree 9 fit toRight
the data suffers from overfitting. Here we used the Moore-Penrose pseudoinverse to solve
the underdetermined normal equations. The solution passes through all of the training
points exactly, but we have not been lucky enough for it to extract the correct structure.
It now has a deep valley in between two training points that does not appear in the true
underlying function. It also increases sharply on the left side of the data, while the true
function decreases in this area.

So far we have only described changing a model’s capacity by changing the
number of input features it has (and simultaneously adding new parameters
associated with those features). There are in fact many ways of changing a model’s
capacity. Capacity is not determined only by the choice of model. The model
specifies which family of functions the learning algorithm can choose from when
varying the parameters in order to reduce a training objective. This is called the
representational capacity of the model. In many cases, finding the best function
within this family is a very difficult optimization problem. In practice, the learning

algorithm does not actually find the best function, but merely one that significantly
reduces the training error. These additional limitations, such as the imperfection

113

Under / Overfitting

The order N is called the
capacity

Training
error

Optimal

13

CHAPTER 5. MACHINE LEARNING BASICS

parameters than training examples. We have little chance of choosing a solution
that generalizes well when so many wildly different solutions exist. In this example,
the quadratic model is perfectly matched to the true structure of the task so it
generalizes well to new data.

�
�

�

�������		��

�
�

�

����
����	��������	�

�
�

�

������		��

Figure 5.2: We fit three models to this example training set. The training data was
generated synthetically, by randomly samplingx values and choosing y deterministically
by evaluating a quadratic function. (Left) A linear function fit to the data suffers from
underfitting—it cannot capture the curvature that is present in the data. () ACenter
quadratic function fit to the data generalizes well to unseen points. It does not suffer from
a significant amount of overfitting or underfitting. () A polynomial of degree 9 fit toRight
the data suffers from overfitting. Here we used the Moore-Penrose pseudoinverse to solve
the underdetermined normal equations. The solution passes through all of the training
points exactly, but we have not been lucky enough for it to extract the correct structure.
It now has a deep valley in between two training points that does not appear in the true
underlying function. It also increases sharply on the left side of the data, while the true
function decreases in this area.

So far we have only described changing a model’s capacity by changing the
number of input features it has (and simultaneously adding new parameters
associated with those features). There are in fact many ways of changing a model’s
capacity. Capacity is not determined only by the choice of model. The model
specifies which family of functions the learning algorithm can choose from when
varying the parameters in order to reduce a training objective. This is called the
representational capacity of the model. In many cases, finding the best function
within this family is a very difficult optimization problem. In practice, the learning

algorithm does not actually find the best function, but merely one that significantly
reduces the training error. These additional limitations, such as the imperfection

113

Under / Overfitting

The order N is called the
capacity

Training
error

Optimal

Generalization
(test) error

13

CHAPTER 5. MACHINE LEARNING BASICS

parameters than training examples. We have little chance of choosing a solution
that generalizes well when so many wildly different solutions exist. In this example,
the quadratic model is perfectly matched to the true structure of the task so it
generalizes well to new data.

�
�

�

�������		��

�
�

�

����
����	��������	�

�
�

�

������		��

Figure 5.2: We fit three models to this example training set. The training data was
generated synthetically, by randomly samplingx values and choosing y deterministically
by evaluating a quadratic function. (Left) A linear function fit to the data suffers from
underfitting—it cannot capture the curvature that is present in the data. () ACenter
quadratic function fit to the data generalizes well to unseen points. It does not suffer from
a significant amount of overfitting or underfitting. () A polynomial of degree 9 fit toRight
the data suffers from overfitting. Here we used the Moore-Penrose pseudoinverse to solve
the underdetermined normal equations. The solution passes through all of the training
points exactly, but we have not been lucky enough for it to extract the correct structure.
It now has a deep valley in between two training points that does not appear in the true
underlying function. It also increases sharply on the left side of the data, while the true
function decreases in this area.

So far we have only described changing a model’s capacity by changing the
number of input features it has (and simultaneously adding new parameters
associated with those features). There are in fact many ways of changing a model’s
capacity. Capacity is not determined only by the choice of model. The model
specifies which family of functions the learning algorithm can choose from when
varying the parameters in order to reduce a training objective. This is called the
representational capacity of the model. In many cases, finding the best function
within this family is a very difficult optimization problem. In practice, the learning

algorithm does not actually find the best function, but merely one that significantly
reduces the training error. These additional limitations, such as the imperfection

113

Under / Overfitting

The order N is called the
capacity

Training
error

Optimal

Generalization
(test) error

13

CHAPTER 5. MACHINE LEARNING BASICS

0 Optimal Capacity

Capacity

E
rr
o
r

Underfitting zone Overfitting zone

Generalization gap

Training error

Generalization error

Figure 5.3: Typical relationship between capacity and error. Training and test error
behave differently. At the left end of the graph, training error and generalization error
are both high. This is the underfitting regime. As we increase capacity, training error
decreases, but the gap between training and generalization error increases. Eventually,
the size of this gap outweighs the decrease in training error, and we enter the overfitting
regime, where capacity is too large, above the optimal capacity.

models, such as linear regression. Parametric models learn a function described
by a parameter vector whose size is finite and fixed before any data is observed.
Non-parametric models have no such limitation.

Sometimes, non-parametric models are just theoretical abstractions (such as
an algorithm that searches over all possible probability distributions) that cannot
be implemented in practice. However, we can also design practical non-parametric
models by making their complexity a function of the training set size. One example
of such an algorithm is nearest neighbor regression. Unlike linear regression, which
has a fixed-length vector of weights, the nearest neighbor regression model simply
stores the X and y from the training set. When asked to classify a test point x,
the model looks up the nearest entry in the training set and returns the associated
regression target. In other words, ŷ = yi where i = argmin ||Xi,: − ||x 2

2. The
algorithm can also be generalized to distance metrics other than the L2 norm, such
as learned distance metrics (,). If the algorithm is allowedGoldberger et al. 2005

to break ties by averaging the yi values for all X i,: that are tied for nearest, then
this algorithm is able to achieve the minimum possible training error (which might
be greater than zero, if two identical inputs are associated with different outputs)
on any regression dataset.

Finally, we can also create a non-parametric learning algorithm by wrapping a
parametric learning algorithm inside another algorithm that increases the number

115

CHAPTER 5. MACHINE LEARNING BASICS

parameters than training examples. We have little chance of choosing a solution
that generalizes well when so many wildly different solutions exist. In this example,
the quadratic model is perfectly matched to the true structure of the task so it
generalizes well to new data.

�
�

�

�������		��

�
�

�

����
����	��������	�

�
�

�

������		��

Figure 5.2: We fit three models to this example training set. The training data was
generated synthetically, by randomly samplingx values and choosing y deterministically
by evaluating a quadratic function. (Left) A linear function fit to the data suffers from
underfitting—it cannot capture the curvature that is present in the data. () ACenter
quadratic function fit to the data generalizes well to unseen points. It does not suffer from
a significant amount of overfitting or underfitting. () A polynomial of degree 9 fit toRight
the data suffers from overfitting. Here we used the Moore-Penrose pseudoinverse to solve
the underdetermined normal equations. The solution passes through all of the training
points exactly, but we have not been lucky enough for it to extract the correct structure.
It now has a deep valley in between two training points that does not appear in the true
underlying function. It also increases sharply on the left side of the data, while the true
function decreases in this area.

So far we have only described changing a model’s capacity by changing the
number of input features it has (and simultaneously adding new parameters
associated with those features). There are in fact many ways of changing a model’s
capacity. Capacity is not determined only by the choice of model. The model
specifies which family of functions the learning algorithm can choose from when
varying the parameters in order to reduce a training objective. This is called the
representational capacity of the model. In many cases, finding the best function
within this family is a very difficult optimization problem. In practice, the learning

algorithm does not actually find the best function, but merely one that significantly
reduces the training error. These additional limitations, such as the imperfection

113

Under / Overfitting

The order N is called the
capacity

Training
error

Optimal

Generalization
(test) error

13

CHAPTER 5. MACHINE LEARNING BASICS

0 Optimal Capacity

Capacity

E
rr
o
r

Underfitting zone Overfitting zone

Generalization gap

Training error

Generalization error

Figure 5.3: Typical relationship between capacity and error. Training and test error
behave differently. At the left end of the graph, training error and generalization error
are both high. This is the underfitting regime. As we increase capacity, training error
decreases, but the gap between training and generalization error increases. Eventually,
the size of this gap outweighs the decrease in training error, and we enter the overfitting
regime, where capacity is too large, above the optimal capacity.

models, such as linear regression. Parametric models learn a function described
by a parameter vector whose size is finite and fixed before any data is observed.
Non-parametric models have no such limitation.

Sometimes, non-parametric models are just theoretical abstractions (such as
an algorithm that searches over all possible probability distributions) that cannot
be implemented in practice. However, we can also design practical non-parametric
models by making their complexity a function of the training set size. One example
of such an algorithm is nearest neighbor regression. Unlike linear regression, which
has a fixed-length vector of weights, the nearest neighbor regression model simply
stores the X and y from the training set. When asked to classify a test point x,
the model looks up the nearest entry in the training set and returns the associated
regression target. In other words, ŷ = yi where i = argmin ||Xi,: − ||x 2

2. The
algorithm can also be generalized to distance metrics other than the L2 norm, such
as learned distance metrics (,). If the algorithm is allowedGoldberger et al. 2005

to break ties by averaging the yi values for all X i,: that are tied for nearest, then
this algorithm is able to achieve the minimum possible training error (which might
be greater than zero, if two identical inputs are associated with different outputs)
on any regression dataset.

Finally, we can also create a non-parametric learning algorithm by wrapping a
parametric learning algorithm inside another algorithm that increases the number

115

Learning
general
features

CHAPTER 5. MACHINE LEARNING BASICS

parameters than training examples. We have little chance of choosing a solution
that generalizes well when so many wildly different solutions exist. In this example,
the quadratic model is perfectly matched to the true structure of the task so it
generalizes well to new data.

�
�

�

�������		��

�
�

�

����
����	��������	�

�
�

�

������		��

Figure 5.2: We fit three models to this example training set. The training data was
generated synthetically, by randomly samplingx values and choosing y deterministically
by evaluating a quadratic function. (Left) A linear function fit to the data suffers from
underfitting—it cannot capture the curvature that is present in the data. () ACenter
quadratic function fit to the data generalizes well to unseen points. It does not suffer from
a significant amount of overfitting or underfitting. () A polynomial of degree 9 fit toRight
the data suffers from overfitting. Here we used the Moore-Penrose pseudoinverse to solve
the underdetermined normal equations. The solution passes through all of the training
points exactly, but we have not been lucky enough for it to extract the correct structure.
It now has a deep valley in between two training points that does not appear in the true
underlying function. It also increases sharply on the left side of the data, while the true
function decreases in this area.

So far we have only described changing a model’s capacity by changing the
number of input features it has (and simultaneously adding new parameters
associated with those features). There are in fact many ways of changing a model’s
capacity. Capacity is not determined only by the choice of model. The model
specifies which family of functions the learning algorithm can choose from when
varying the parameters in order to reduce a training objective. This is called the
representational capacity of the model. In many cases, finding the best function
within this family is a very difficult optimization problem. In practice, the learning

algorithm does not actually find the best function, but merely one that significantly
reduces the training error. These additional limitations, such as the imperfection

113

Under / Overfitting

The order N is called the
capacity

Training
error

Optimal

Generalization
(test) error

13

CHAPTER 5. MACHINE LEARNING BASICS

0 Optimal Capacity

Capacity

E
rr
o
r

Underfitting zone Overfitting zone

Generalization gap

Training error

Generalization error

Figure 5.3: Typical relationship between capacity and error. Training and test error
behave differently. At the left end of the graph, training error and generalization error
are both high. This is the underfitting regime. As we increase capacity, training error
decreases, but the gap between training and generalization error increases. Eventually,
the size of this gap outweighs the decrease in training error, and we enter the overfitting
regime, where capacity is too large, above the optimal capacity.

models, such as linear regression. Parametric models learn a function described
by a parameter vector whose size is finite and fixed before any data is observed.
Non-parametric models have no such limitation.

Sometimes, non-parametric models are just theoretical abstractions (such as
an algorithm that searches over all possible probability distributions) that cannot
be implemented in practice. However, we can also design practical non-parametric
models by making their complexity a function of the training set size. One example
of such an algorithm is nearest neighbor regression. Unlike linear regression, which
has a fixed-length vector of weights, the nearest neighbor regression model simply
stores the X and y from the training set. When asked to classify a test point x,
the model looks up the nearest entry in the training set and returns the associated
regression target. In other words, ŷ = yi where i = argmin ||Xi,: − ||x 2

2. The
algorithm can also be generalized to distance metrics other than the L2 norm, such
as learned distance metrics (,). If the algorithm is allowedGoldberger et al. 2005

to break ties by averaging the yi values for all X i,: that are tied for nearest, then
this algorithm is able to achieve the minimum possible training error (which might
be greater than zero, if two identical inputs are associated with different outputs)
on any regression dataset.

Finally, we can also create a non-parametric learning algorithm by wrapping a
parametric learning algorithm inside another algorithm that increases the number

115

Learning the specificities of the
dataset

Learning
general
features

Deep Learning is…

a form of Machine Learning

It specializes in data where the fit function is very
hard to express (like image processing)

14

Traditional approaches Deep Learning

Manual pre-selection of data
to concentrate on important

features

Input the « raw » data, to
include maximum features

Striking a balance
The full game of Deep Learning is:

to be able to express complex functions to
represent the features in the raw data

achieve good generalization to new data: avoid
overfitting

15

Machine learning

y = 3x2

y = ax

b + c

y =
NX

i=0

aix
i

Deep learning

Striking a balance
The full game of Deep Learning is:

to be able to express complex functions to
represent the features in the raw data

achieve good generalization to new data: avoid
overfitting

15

Machine learning

y = 3x2

y = ax

b + c

y =
NX

i=0

aix
i

Deep learning

Problem: you must guess the function

Striking a balance
The full game of Deep Learning is:

to be able to express complex functions to
represent the features in the raw data

achieve good generalization to new data: avoid
overfitting

15

Machine learning

y = 3x2

y = ax

b + c

y =
NX

i=0

aix
i

Deep learning

Problem: you must guess the function

You don’t need to know it. But
dangerous: very prone to overfitting!

THE CURSE OF BIG
DIMENSIONALITY

16

Raw data has high dimension

28 x 28 pixel image = 784
independent dimensions

17

Raw data has high dimension

28 x 28 pixel image = 784
independent dimensions

17

256 x 256 pixel image with 3 color
channels = 196,608 independent
dimensions!!

High dimension sucks

18

High dimension sucks

Very High dimension sucks
exponentially more

18

Example: let’s talk spheres

19

Example: let’s talk spheres

= 78.5 %

19

Example: let’s talk spheres

= 78.5 %

19

Example: let’s talk spheres

= 78.5 % = 52.3 % … ?

19

N-dimensional ball

20

N-dimensional ball

The n-ball volume ratio tends to
0 (fast) in high dimension

< 10-7

20

N-dimensional ball

The n-ball volume ratio tends to
0 (fast) in high dimension

Most points are « in the corners »

< 10-7

20

N-dimensional ball

The n-ball volume ratio tends to
0 (fast) in high dimension

Most points are « in the corners »

The number of corners
explodes too!

< 10-7

20

N-dimensional ball

The n-ball volume ratio tends to
0 (fast) in high dimension

Most points are « in the corners »

The number of corners
explodes too!

< 10-7

20

A high dimensional
space looks like this…

Samples in High Dimension

Dimensions Space size Number of
corners

784 101,888 10236

21

Example: 2D images (with 256 levels / channel)

Samples in High Dimension

Dimensions Space size Number of
corners

784 101,888 10236

196,608 10473,479 1059,185

21

Example: 2D images (with 256 levels / channel)

Samples in High Dimension

22

Samples in High Dimension
Key take aways in high dimension

« I have a LOT of samples! »

22

Samples in High Dimension
Key take aways in high dimension

« I have a LOT of samples! »
 => No, you don’t. They are very sparse

22

Samples in High Dimension
Key take aways in high dimension

« I have a LOT of samples! »
 => No, you don’t. They are very sparse

You are learning a function using no points
in the middle and almost none in the
corners… See the problem?

22

Samples in High Dimension
Key take aways in high dimension

« I have a LOT of samples! »
 => No, you don’t. They are very sparse

You are learning a function using no points
in the middle and almost none in the
corners… See the problem?

22

Machine learning

y = 3x2

y = ax

b + c

y =
NX

i=0

aix
i

Deep learning

This is a case of extreme
generalization

How do we solve this?

Using prior knowledge

n

n

N = n2

23

Using prior knowledge
Classical machine learning (random forest,
clustering…)

prior = smoothness

Number of examples needed: O(N)
(several per square)

n

n

N = n2

23

Using prior knowledge
Classical machine learning (random forest,
clustering…)

prior = smoothness

Number of examples needed: O(N)
(several per square)

Deep neural network: build your own function using prior
knowledge

Ex: texture

End result: O(log(N)) points needed!

n

n

N = n2

23

The manifold
Let’s take 28x28 images :

24

The manifold
Let’s take 28x28 images :

24

The manifold
Let’s take 28x28 images :

24

The manifold
Let’s take 28x28 images :

24

The manifold
Let’s take 28x28 images :

How long before I get this ?

24

The manifold
Let’s take 28x28 images :

How long before I get this ?

The manifold

������� �	
������
������� ������

������ �������' ���
����

5� ��������� ������� ���������	 ���� ����
 �� ������� �������	 �
 ���� �� �
���������

5 �
 � ��������� ��	���� ��������������� �� �
 �
�� �� �����
� �

����������
����
���� � ���	�������� ������ ���� ������ 4��� ��� 	���� ������ ��� �������� �������
������
 �� �� � D��������
����� �� �������� ����� �� ���������� ���
������ �� ���
����� �
 � (� ������ ��� �� �
 �� ���� �
�������� �������� �� E(�
�����

��� ��������� �� � ���	��������
���������	 ���� ����� ������
 ��� ���
�����
�� ����
���������
 ���� ��� �� ������� �� ���� �� ��� �������� ���� ��� ��
�����
�� � ���	������	 ���� �� ��� ������� �� ��� �����K

������ �
 � ��������� ��� ���
���
 ������
����� ��
�� �� ��
��

5�����	� ����� �
 � ������ ������������ ������	 �� ��� ���� 7���������9
�� ������� �������	 �� ����
 �� �� �
�� ���� ���
��� �� ��
�	���� � ���������

�� �� �����
 ���� ��� �� ������������ ���� �� ���
������	 ���� �
���� ������
�� ��	���
 �� �������� �� �����
���
� �������� �� � ��	���(�����
�����
�����
D��� �����
��� �����
����
 �� � ����� ��������� �� ���������� '�� 4�	� ��� ��)�""
������� �� �������	 ���� ����	 ���� � ���(�����
����� �������� �������� �� ���(
�����
�����
����� �� ��� ������� �� ������� �������	� �� ����� ��� �����
��������
�� ��� �������� �� ���� ���� ��� ����� �� �������� ���
 ����� ������
 ���� �
�������� �����
���
 ��
���� 4�� �������� � �	��� ��	�� �
 � �������� ���� ��
 �
��	��
�����
��� �� ��
� �����
 ��� ��� �����
���
 �� ��� �����
������ �� ��� �������

� � � � � � � � � � � � � � � �� � � � � � � �
�� ��

�� ��

� ��

� ��

� ��

� ��

� ��

� ��

������ ��		
 <��� ������� ���� � �����������
 �
 � ���.����
���
�� ����� ���� �� ��������
��
��
������
��� � �
�.����
���
�� ��
������ ��0� � ������� ����
�� ��� ����� ��
� �
�������
��� �
������
� ��
����� ���� ��� ����
�� ������ �
����

���

The input space is huge

But we don’t need to
cover it all

We just need to describe
the manifold of
« relevant » points

24

Deep Learning Priors
The data is inside a high dimensional space, but
the manifold of interest is much smaller

The data comes from a composition of features

The features can assemble at several levels of
hierarchy

25

Deep Learning Priors
The data is inside a high dimensional space, but
the manifold of interest is much smaller

The data comes from a composition of features

The features can assemble at several levels of
hierarchy

25

Machine learning

y = 3x2

y = ax

b + c

y =
NX

i=0

aix
i

Deep learning

Wait a minute… you said :

Deep Learning Priors
The data is inside a high dimensional space, but
the manifold of interest is much smaller

The data comes from a composition of features

The features can assemble at several levels of
hierarchy

25

Machine learning

y = 3x2

y = ax

b + c

y =
NX

i=0

aix
i

Deep learning

Wait a minute… you said :
This is not like general machine learning:

you do not specify the fitted function

you only give these « vague » priors

they are enough for the function to focus
on the manifold of « important » points

ARTIFICIAL NEURAL
NETWORKS TO THE RESCUE

26

« Neural » Networks?

27

108 D. H. HUBEL AND T. N. WIESEL
Tungsten micro-electrodes were advanced by a hydraulic micro-electrode positioner

(Hubel, 1957, 1959). In searching for single cortical units the retina was continually stimu-
lated with stationary and moving forms while the electrode was advanced. The unresolved
background activity (see p. 129) served as a guide for determining the optimum stimulus.
This procedure increased the number of cells observed in a penetration, since the sampling
was not limited to spontaneously active units.
In each penetration electrolytic lesions were made at one or more points. When only one

lesion was made, it was generally at the end of an electrode track. Brains were fixed in 10 %
formalin, embedded in celloidin, sectioned at 20 u, and stained with cresyl violet. Lesions
were 50-100 I in diameter, which was small enough to indicate the position of the electrode
tip to the nearest cortical layer. The positions of other units encountered in a cortical pene-
tration were determined by calculating the distance back from the lesion along the track,

Text-fig. 1. Diagram of dorsal aspect of cat's brain, to show entry points of 45
micro-electrode penetrations. The penetrations between the interrupted lines are
those in which cells had their receptive fields in or near area centralis. LG, lateral
gyrus; PLG, post-lateral gyrus. Scale, 1 cm.

using depth readings corresponding to the unit and the lesion. A correction was made for
brain shrinkage, which was estimated by comparing the distance between two lesions,
measured under the microscope, with the distance calculated from depths at which the two
lesions were made. From brain to brain this shrinkage was not constant, so that it was not
possible to apply an average correction for shrinkage to all brains. For tracks marked by
only one lesion it was assumed that the first unit activity was recorded at the boundary of
the first and second layers; any error resulting from this was probably small, since in a number
of penetrations a lesion was made at the point where the first units were encountered, and
these were in the lower first or the upper second layers, or else at the very boundary. The
absence of cell-body records and unresolved background activity as the electrode passed
through subcortical white matter (see Text-fig. 13 and P1. 1) was also helpful in confirming
the accuracy of the track reconstructions.

Hubel, David H., and Torsten N. Wiesel.
"Receptive fields, binocular interaction and
functional architecture in the cat's visual
cortex." The Journal of physiology 160.1

(1962): 106-154.

Cat brain (sorry…)

« Neural » Networks?
Loosely inspired from
biological systems

27

108 D. H. HUBEL AND T. N. WIESEL
Tungsten micro-electrodes were advanced by a hydraulic micro-electrode positioner

(Hubel, 1957, 1959). In searching for single cortical units the retina was continually stimu-
lated with stationary and moving forms while the electrode was advanced. The unresolved
background activity (see p. 129) served as a guide for determining the optimum stimulus.
This procedure increased the number of cells observed in a penetration, since the sampling
was not limited to spontaneously active units.
In each penetration electrolytic lesions were made at one or more points. When only one

lesion was made, it was generally at the end of an electrode track. Brains were fixed in 10 %
formalin, embedded in celloidin, sectioned at 20 u, and stained with cresyl violet. Lesions
were 50-100 I in diameter, which was small enough to indicate the position of the electrode
tip to the nearest cortical layer. The positions of other units encountered in a cortical pene-
tration were determined by calculating the distance back from the lesion along the track,

Text-fig. 1. Diagram of dorsal aspect of cat's brain, to show entry points of 45
micro-electrode penetrations. The penetrations between the interrupted lines are
those in which cells had their receptive fields in or near area centralis. LG, lateral
gyrus; PLG, post-lateral gyrus. Scale, 1 cm.

using depth readings corresponding to the unit and the lesion. A correction was made for
brain shrinkage, which was estimated by comparing the distance between two lesions,
measured under the microscope, with the distance calculated from depths at which the two
lesions were made. From brain to brain this shrinkage was not constant, so that it was not
possible to apply an average correction for shrinkage to all brains. For tracks marked by
only one lesion it was assumed that the first unit activity was recorded at the boundary of
the first and second layers; any error resulting from this was probably small, since in a number
of penetrations a lesion was made at the point where the first units were encountered, and
these were in the lower first or the upper second layers, or else at the very boundary. The
absence of cell-body records and unresolved background activity as the electrode passed
through subcortical white matter (see Text-fig. 13 and P1. 1) was also helpful in confirming
the accuracy of the track reconstructions.

Hubel, David H., and Torsten N. Wiesel.
"Receptive fields, binocular interaction and
functional architecture in the cat's visual
cortex." The Journal of physiology 160.1

(1962): 106-154.

Cat brain (sorry…)

« Neural » Networks?
Loosely inspired from
biological systems

Number of neurons and
connections now reaching
mammalian values

CHAPTER 1. INTRODUCTION

1950 1985 2000 2015 2056
10−2
10−1
100
101
102
103
104
105
106
107
108
109
1010
1011

N
u
m
b
er
o
f
n
eu
ro
n
s
(l
o
g
a
ri
th
m
ic
sc
a
le
)

1 2

3

4
5

6

7

8

9
10

11

12

13

14

15

16
17

18
19 20

Sponge

Roundworm

Leech

Ant
Bee

Frog

Octopus

Human
Increasing neural network size over time

Figure 1.11: Since the introduction of hidden units, artificial neural networks have doubled
in size roughly every 2.4 years. Biological neural network sizes from ().Wikipedia 2015

1. Perceptron (, ,)Rosenblatt 1958 1962

2. Adaptive linear element (,)Widrow and Hoff 1960

3. Neocognitron (Fukushima 1980,)

4. Early back-propagation network (,)Rumelhart et al. 1986b

5. Recurrent neural network for speech recognition (Robinson and Fallside 1991,)

6. Multilayer perceptron for speech recognition (,)Bengio et al. 1991

7. Mean field sigmoid belief network (,)Saul et al. 1996

8. LeNet-5 (,)LeCun et al. 1998b

9. Echo state network (,)Jaeger and Haas 2004

10. Deep belief network (,)Hinton et al. 2006

11. GPU-accelerated convolutional network (,)Chellapilla et al. 2006

12. Deep Boltzmann machine (Salakhutdinov and Hinton 2009a,)

13. GPU-accelerated deep belief network (,)Raina et al. 2009

14. Unsupervised convolutional network (,)Jarrett et al. 2009

15. GPU-accelerated multilayer perceptron (,)Ciresan et al. 2010

16. OMP-1 network (,)Coates and Ng 2011

17. Distributed autoencoder (,)Le et al. 2012

18. Multi-GPU convolutional network (,)Krizhevsky et al. 2012

19. COTS HPC unsupervised convolutional network (,)Coates et al. 2013

20. GoogLeNet (,)Szegedy et al. 2014a

27

27

108 D. H. HUBEL AND T. N. WIESEL
Tungsten micro-electrodes were advanced by a hydraulic micro-electrode positioner

(Hubel, 1957, 1959). In searching for single cortical units the retina was continually stimu-
lated with stationary and moving forms while the electrode was advanced. The unresolved
background activity (see p. 129) served as a guide for determining the optimum stimulus.
This procedure increased the number of cells observed in a penetration, since the sampling
was not limited to spontaneously active units.
In each penetration electrolytic lesions were made at one or more points. When only one

lesion was made, it was generally at the end of an electrode track. Brains were fixed in 10 %
formalin, embedded in celloidin, sectioned at 20 u, and stained with cresyl violet. Lesions
were 50-100 I in diameter, which was small enough to indicate the position of the electrode
tip to the nearest cortical layer. The positions of other units encountered in a cortical pene-
tration were determined by calculating the distance back from the lesion along the track,

Text-fig. 1. Diagram of dorsal aspect of cat's brain, to show entry points of 45
micro-electrode penetrations. The penetrations between the interrupted lines are
those in which cells had their receptive fields in or near area centralis. LG, lateral
gyrus; PLG, post-lateral gyrus. Scale, 1 cm.

using depth readings corresponding to the unit and the lesion. A correction was made for
brain shrinkage, which was estimated by comparing the distance between two lesions,
measured under the microscope, with the distance calculated from depths at which the two
lesions were made. From brain to brain this shrinkage was not constant, so that it was not
possible to apply an average correction for shrinkage to all brains. For tracks marked by
only one lesion it was assumed that the first unit activity was recorded at the boundary of
the first and second layers; any error resulting from this was probably small, since in a number
of penetrations a lesion was made at the point where the first units were encountered, and
these were in the lower first or the upper second layers, or else at the very boundary. The
absence of cell-body records and unresolved background activity as the electrode passed
through subcortical white matter (see Text-fig. 13 and P1. 1) was also helpful in confirming
the accuracy of the track reconstructions.

Hubel, David H., and Torsten N. Wiesel.
"Receptive fields, binocular interaction and
functional architecture in the cat's visual
cortex." The Journal of physiology 160.1

(1962): 106-154.

Cat brain (sorry…)

« Neural » Networks?
Loosely inspired from
biological systems

Number of neurons and
connections now reaching
mammalian values

CHAPTER 1. INTRODUCTION

1950 1985 2000 2015 2056
10−2
10−1
100
101
102
103
104
105
106
107
108
109
1010
1011

N
u
m
b
er
o
f
n
eu
ro
n
s
(l
o
g
a
ri
th
m
ic
sc
a
le
)

1 2

3

4
5

6

7

8

9
10

11

12

13

14

15

16
17

18
19 20

Sponge

Roundworm

Leech

Ant
Bee

Frog

Octopus

Human
Increasing neural network size over time

Figure 1.11: Since the introduction of hidden units, artificial neural networks have doubled
in size roughly every 2.4 years. Biological neural network sizes from ().Wikipedia 2015

1. Perceptron (, ,)Rosenblatt 1958 1962

2. Adaptive linear element (,)Widrow and Hoff 1960

3. Neocognitron (Fukushima 1980,)

4. Early back-propagation network (,)Rumelhart et al. 1986b

5. Recurrent neural network for speech recognition (Robinson and Fallside 1991,)

6. Multilayer perceptron for speech recognition (,)Bengio et al. 1991

7. Mean field sigmoid belief network (,)Saul et al. 1996

8. LeNet-5 (,)LeCun et al. 1998b

9. Echo state network (,)Jaeger and Haas 2004

10. Deep belief network (,)Hinton et al. 2006

11. GPU-accelerated convolutional network (,)Chellapilla et al. 2006

12. Deep Boltzmann machine (Salakhutdinov and Hinton 2009a,)

13. GPU-accelerated deep belief network (,)Raina et al. 2009

14. Unsupervised convolutional network (,)Jarrett et al. 2009

15. GPU-accelerated multilayer perceptron (,)Ciresan et al. 2010

16. OMP-1 network (,)Coates and Ng 2011

17. Distributed autoencoder (,)Le et al. 2012

18. Multi-GPU convolutional network (,)Krizhevsky et al. 2012

19. COTS HPC unsupervised convolutional network (,)Coates et al. 2013

20. GoogLeNet (,)Szegedy et al. 2014a

27

CHAPTER 1. INTRODUCTION

���� ���� ���� ����
���

���

���

���

	

�
��

�
�

��
��
��
��
��
�

�

�

�

�

�

�

� �

�

�

��

���������

�
���

	��

�����
��� ���
��

���
��
�����������
��
!�������

Figure 1.10: Initially, the number of connections between neurons in artificial neural
networks was limited by hardware capabilities. Today, the number of connections between
neurons is mostly a design consideration. Some artificial neural networks have nearly as
many connections per neuron as a cat, and it is quite common for other neural networks
to have as many connections per neuron as smaller mammals like mice. Even the human
brain does not have an exorbitant amount of connections per neuron. Biological neural
network sizes from ().Wikipedia 2015

1. Adaptive linear element (,)Widrow and Hoff 1960

2. Neocognitron (Fukushima 1980,)

3. GPU-accelerated convolutional network (,)Chellapilla et al. 2006

4. Deep Boltzmann machine (Salakhutdinov and Hinton 2009a,)

5. Unsupervised convolutional network (,)Jarrett et al. 2009

6. GPU-accelerated multilayer perceptron (,)Ciresan et al. 2010

7. Distributed autoencoder (,)Le et al. 2012

8. Multi-GPU convolutional network (,)Krizhevsky et al. 2012

9. COTS HPC unsupervised convolutional network (,)Coates et al. 2013

10. GoogLeNet (,)Szegedy et al. 2014a

24

27

108 D. H. HUBEL AND T. N. WIESEL
Tungsten micro-electrodes were advanced by a hydraulic micro-electrode positioner

(Hubel, 1957, 1959). In searching for single cortical units the retina was continually stimu-
lated with stationary and moving forms while the electrode was advanced. The unresolved
background activity (see p. 129) served as a guide for determining the optimum stimulus.
This procedure increased the number of cells observed in a penetration, since the sampling
was not limited to spontaneously active units.
In each penetration electrolytic lesions were made at one or more points. When only one

lesion was made, it was generally at the end of an electrode track. Brains were fixed in 10 %
formalin, embedded in celloidin, sectioned at 20 u, and stained with cresyl violet. Lesions
were 50-100 I in diameter, which was small enough to indicate the position of the electrode
tip to the nearest cortical layer. The positions of other units encountered in a cortical pene-
tration were determined by calculating the distance back from the lesion along the track,

Text-fig. 1. Diagram of dorsal aspect of cat's brain, to show entry points of 45
micro-electrode penetrations. The penetrations between the interrupted lines are
those in which cells had their receptive fields in or near area centralis. LG, lateral
gyrus; PLG, post-lateral gyrus. Scale, 1 cm.

using depth readings corresponding to the unit and the lesion. A correction was made for
brain shrinkage, which was estimated by comparing the distance between two lesions,
measured under the microscope, with the distance calculated from depths at which the two
lesions were made. From brain to brain this shrinkage was not constant, so that it was not
possible to apply an average correction for shrinkage to all brains. For tracks marked by
only one lesion it was assumed that the first unit activity was recorded at the boundary of
the first and second layers; any error resulting from this was probably small, since in a number
of penetrations a lesion was made at the point where the first units were encountered, and
these were in the lower first or the upper second layers, or else at the very boundary. The
absence of cell-body records and unresolved background activity as the electrode passed
through subcortical white matter (see Text-fig. 13 and P1. 1) was also helpful in confirming
the accuracy of the track reconstructions.

Hubel, David H., and Torsten N. Wiesel.
"Receptive fields, binocular interaction and
functional architecture in the cat's visual
cortex." The Journal of physiology 160.1

(1962): 106-154.

Cat brain (sorry…)

What is a « neuron »?

28

What is a « neuron »?
x1

x2

x3

xD

…
Inputs

28

What is a « neuron »?
w1

w2

w3

wD

Weights

x1

x2

x3

xD

…
Inputs

28

What is a « neuron »?
w1

w2

w3

wD

Weights Activation

x1

x2

x3

xD

…
Inputs

28

What is a « neuron »?
w1

w2

w3

wD

Weights Activation

x1

x2

x3

xD

…
Inputs

28

Job: introduce non-linearity

What is a « neuron »?
w1

w2

w3

wD

Weights Activation Output

x1

x2

x3

xD

…
Inputs

28

Neuron

What is a « neuron »?
w1

w2

w3

wD

Weights Activation Output

x1

x2

x3

xD

…
Inputs

28

Assembling neurons

29

Assembling neurons

29

Assembling neurons

It’s a 0!

29

Assembling neurons

It’s a 0!

It’s a 2!

29

Play around! http://playground.tensorflow.org/

30

Is my function a neuron?

31

w1

w2

x1

x2

y

Is my function a neuron?

31

y = max(x1w1 + x2w2, 0)

w1

w2

x1

x2

y

Is my function a neuron?

Neural nets are just computational graphs

You can represent many (any?) operations with
neural nets

But it does not mean you are doing deep learning…

31

y = max(x1w1 + x2w2, 0)

w1

w2

x1

x2

y

DEEP CLASSIFIERS

32

Example: the MNIST dataset

Large database of
handwritten digits
(stored as 28x28
pixel images)

You recognize
these instantly…

… but how can we
build a net that
recognizes them?

33

A simple neural net
Simple « Multi-Layer
Perceptron » (MLP)

28x28 = 784 pixels on
input

0 → 9: 10 outputs

1 hidden layer

34

A simple neural net
Simple « Multi-Layer
Perceptron » (MLP)

28x28 = 784 pixels on
input

0 → 9: 10 outputs

1 hidden layer

34

91.5% accuracy

= 8.5% error

A simple neural net
Simple « Multi-Layer
Perceptron » (MLP)

28x28 = 784 pixels on
input

0 → 9: 10 outputs

1 hidden layer

34

91.5% accuracy

= 8.5% error

Easy right?
With enough neurons and depth, you can replicate any function!

35

Easy right?
With enough neurons and depth, you can replicate any function!

Yes. But, this becomes
cumbersome fast…

35

Easy right?
With enough neurons and depth, you can replicate any function!

Yes. But, this becomes
cumbersome fast…

Especially for big input
images (e.g. 256x256 px)

35

Easy right?
With enough neurons and depth, you can replicate any function!

Yes. But, this becomes
cumbersome fast…

Especially for big input
images (e.g. 256x256 px)

35

To improve this approach, the neurons can be connected differently

Image filters (Gimp docs)

Image Kernel Result

This is in effect a convolution
of the image by the filter

36

Base

37

Edge detection

38

Edge detection

38

Sharpen

39

Sharpen

39

Building smarter layers

Fully Connected Layer

40

Building smarter layers

Fully Connected Layer

learned
weights

Shared weights using
convolution :

You learn the kernel
weights, then share over

the full input

40

Deep MNIST

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based learning
applied to document recognition, Proc. IEEE 86(11): 2278–2324, 1998

LeNet-5 (1998) : ~1% error

41

Deep MNIST

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based learning
applied to document recognition, Proc. IEEE 86(11): 2278–2324, 1998

Best result today: 0.21% error (less than humans!)
Li Wan, Matthew Zeiler, Sixin Zhang, Yann LeCun, Rob Fergus Regularization of Neural

Network using DropConnect, International Conference on Machine Learning 2013

LeNet-5 (1998) : ~1% error

41

ImageNet

Popular AI challenge:

- Crowdsourced
labeling of image
database (14 million
labeled images)

- Competing algorithms
try to classify them

ImageNet
classification

challenge

42

ImageNet

Popular AI challenge:

- Crowdsourced
labeling of image
database (14 million
labeled images)

- Competing algorithms
try to classify them

ImageNet
classification

challenge

42

Wait, 14 million??

Amazon calls it
« Human Intelligence

Tasks »

€ $¥

43

Wait, 14 million??

Amazon calls it
« Human Intelligence

Tasks »

It’s probably pretty
boring though…

€ $¥

43

ImageNet
Images are Big Data
compared to MNIST

44

ImageNet
Images are Big Data
compared to MNIST

AlexNet: ImageNet
2012 winner

44

ImageNet
Images are Big Data
compared to MNIST

AlexNet: ImageNet
2012 winner

GoogLeNet: ImageNet
2014 winner

44

Deeper and deeper…

0

7,25

14,5

21,75

29

2010 2011 2012 2013 2014 2015

25,8
28,2

0

7

14

21

28

2010 2011 2012 2013 2014 2015

3,57
6,7

11,7
16,4

45

Deeper and deeper…

0

7,25

14,5

21,75

29

2010 2011 2012 2013 2014 2015

25,8
28,2

8 layers
8 layers

0

7

14

21

28

2010 2011 2012 2013 2014 2015

3,57
6,7

11,7
16,4

45

Deeper and deeper…

0

7,25

14,5

21,75

29

2010 2011 2012 2013 2014 2015

25,8
28,2

8 layers
8 layers

22 layers

0

7

14

21

28

2010 2011 2012 2013 2014 2015

3,57
6,7

11,7
16,4

152 layers

45

Deeper and deeper…

0

7,25

14,5

21,75

29

2010 2011 2012 2013 2014 2015

25,8
28,2

8 layers
8 layers

22 layers

0

7

14

21

28

2010 2011 2012 2013 2014 2015

3,57
6,7

11,7
16,4

152 layers

45

How do I use this?

Do not expect to make sense of the function.

GoogleNet (22 layers) = 11,193,984 parameters

ResNet (153 layers) = 25,636,712 parameters

Deep neural classifiers are high performers

But « artificial intelligence » is not just about
classification! Can it do anything else?

46

ARTIFICIAL « INTELLIGENCE »

47

« Most of human and animal learning is
unsupervised learning »

-Yann LeCun

48

« Most of human and animal learning is
unsupervised learning »

-Yann LeCun

Big deal :

48

« Most of human and animal learning is
unsupervised learning »

-Yann LeCun

Founding Director of the NYU Center for Data Science
Big deal :

48

« Most of human and animal learning is
unsupervised learning »

-Yann LeCun

Founding Director of the NYU Center for Data Science
Director of AI research at Facebook

Big deal :

48

3 types of learning

49

3 types of learning

Reinforcement learning

49

3 types of learning

Reinforcement learning
Supervised learning

49

3 types of learning

Reinforcement learning
Supervised learning

Unsupervised learning

49

3 types of learning

Reinforcement learning
Supervised learning

Unsupervised learning

Today

Today

Tomorrow

Time

49

Reinforcement learning

Input: a game. Output: the score. No limit
to the number of playthroughs

The cherry!

50

Reinforcement learning

Input: a game. Output: the score. No limit
to the number of playthroughs

The cherry!

50

Supervised learning
The icing!

Learn to predict from a finite set of
labeled data

Example: classifiers

Great, but needs a lot of data…

51

Unsupervised learning
The cake!

To teach a child to recognize a cat, he
doesn’t need to see 1 million cats

52

Unsupervised learning
The cake!

To teach a child to recognize a cat, he
doesn’t need to see 1 million cats

cat!

cat!

cat!

Supervised learning

52

Unsupervised learning
The cake!

To teach a child to recognize a cat, he
doesn’t need to see 1 million cats

cat!

cat!

cat!

Supervised learning

cat?
52

Unsupervised learning
The cake!

To teach a child to recognize a cat, he
doesn’t need to see 1 million cats

Unsupervised learning

53

Unsupervised learning
The cake!

To teach a child to recognize a cat, he
doesn’t need to see 1 million cats

Unsupervised learning

53

Unsupervised learning
The cake!

To teach a child to recognize a cat, he
doesn’t need to see 1 million cats

Unsupervised learning

53

Unsupervised learning
The cake!

To teach a child to recognize a cat, he
doesn’t need to see 1 million cats

Unsupervised learning

Do you find « similar »
elements?

53

Unsupervised learning
The cake!

To teach a child to recognize a cat, he
doesn’t need to see 1 million cats

Unsupervised learning

Do you find « similar »
elements?

53

Unsupervised learning
The cake!

To teach a child to recognize a cat, he
doesn’t need to see 1 million cats

Unsupervised learning

Do you find « similar »
elements?

Good! That’s called a cat

53

« True » AI is unsupervised

« Intelligent » beings infer relations / classes

They gather unlabeled information at all times

Then learn the names for them quickly

54

Unsupervised example: the
autoencoder

Autoencoder

55

Unsupervised example: the
autoencoder

Autoencoder

High
dimension

High
dimension

55

Unsupervised example: the
autoencoder

Success means:

• meaningful features have been extracted at the

bottleneck without guidance

• they are a low dimensional representation of

most important features

Autoencoder

High
dimension

High
dimension

Low
dimension

55

GREAT. SO HOW DO WE USE IT?

56

GREAT. SO HOW DO WE USE IT?

GENERATIVE ADVERSARIAL
NETWORKS

56

« Generative Adversarial Networks is the most
interesting idea in the last ten years in machine

learning »

-Yann LeCun

The big deal guy

57

Classifiers / Regressors

Not a Mona!

It’s a Mona!

58

NN

Classifiers / Regressors

Not a Mona!

It’s a Mona!

58

NN

Classifiers / Regressors

Not a Mona!

It’s a Mona!

Can answer a specific question
= low dimensional output

58

NN

Classifiers / Regressors

Not a Mona!

It’s a Mona!

Can answer a specific question
= low dimensional output

Cannot generate complex data
= high dimensional output

58

Adverserial generators
real
data

59

Adverserial generators
real
data

Generator
NN

noise

59

Adverserial generators
real
data

Discriminator
(classifier)

NN

Generator
NN

noise

59

Adverserial generators
real
data

Discriminator
(classifier)

NN True

Fake
Generator

NN

noise

59

Adverserial generators
real
data

Discriminator
(classifier)

NN True

Fake

2 Networks (Generator /
Discriminator) « fight » for

best result

Generator
NN

noise

59

Adverserial generators
real
data

Discriminator
(classifier)

NN True

Fake

Once trained, the
generator can create
« plausible » images

2 Networks (Generator /
Discriminator) « fight » for

best result

Generator
NN

noise

59

GAN examples

Generated bedroom images

60

GAN examples

Realistic images according to CIFAR-10 dataset
61

Pix2Pix: a more useful GAN

Generator
NN

The generator can be
tweaked to accept an input

62

Pix2Pix: a more useful GAN

Generator
NN

The generator can be
tweaked to accept an input

62

Pix2Pix: a more useful GAN

Generator
NN

The generator can be
tweaked to accept an input

62

Pix2Pix: a more useful GAN

Generator
NN

Discriminator
(classifier)

NN

True

Fake
The generator can be

tweaked to accept an input

62

Pix2Pix: a more useful GAN

live test (you draw!) at: https://affinelayer.com/pixsrv/
63

Pix2Pix: a more useful GAN

live test (you draw!) at: https://affinelayer.com/pixsrv/
63

Pix2Pix: a more useful GAN

live test (you draw!) at: https://affinelayer.com/pixsrv/
63

SRGAN
Super - Resolution GAN

Output: 64x64 images (from
the Large-scale
CelebFaces
Attributes dataset)

Input: degraded 16x16
image

GAN learns to reproduce
« credible » images

16x16

64x64bicubic
interpolation

SRGAN

64

Google + (RAISR)
https://blog.google/products/google-plus/saving-you-bandwidth-through-machine-learning/

65

Google + (RAISR)
https://blog.google/products/google-plus/saving-you-bandwidth-through-machine-learning/

65

Style Transfer

66

Picasso van Gogh Monnet

And so many more…

67

Input

And so many more…

Recurrent NN:

67

Input

And so many more…

Recurrent NN:

67

Input

Output

And so many more…

Recurrent NN:

67

Input

Output

And so many more…

Recurrent NN:

e.g. LSTM (Long Short-term Memory), a
convolution over time. Used in speech recognition

67

Input

Output

And so many more…

Recurrent NN:

e.g. LSTM (Long Short-term Memory), a
convolution over time. Used in speech recognition

Variational Autoencoders: another unsupervised
generative model like GANs

67

Input

Output

And so many more…

Recurrent NN:

e.g. LSTM (Long Short-term Memory), a
convolution over time. Used in speech recognition

Variational Autoencoders: another unsupervised
generative model like GANs

U-Nets :

etc…

67

Input

Output

DEEP LEARNING IN CFD:
SOME EXAMPLES

68

Post Processing

69

Kutz, J. Nathan. "Deep learning in fluid dynamics." Journal of Fluid Mechanics 814 (2017): 1-4.

POD / DMD Deep Neural
Networks

Computational speed

Physically interpretable

Ability to capture multi-scale

Invariance by rotation/scaling

Suggestion: propose a dataset for a fluid
mechanics challenge (like ImageNet)

RANS modelling

Authors compared a simple MLP (not great) with a
smarter NN accounting for rotational invariance

They obtained excellent predictions (much better
than a quadratic eddy viscosity model)

70

Ling, Julia, Andrew Kurzawski, and Jeremy Templeton. "Reynolds averaged turbulence modelling using
deep neural networks with embedded invariance." Journal of Fluid Mechanics 807 (2016): 155-166.

Input: S and R (strain /
rotation rate tensors)

Output: Reynolds stress
anisotropy tensor

LBM imitation

71

Guo, Xiaoxiao, Wei Li, and Francesco Iorio. "Convolutional neural networks for steady flow
approximation." Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. ACM, 2016.

also enable per-pixel predictions in images. For example,
FlowNet [8] predicts the optical flow field from a pair of im-
ages. Eigen, Puhrsch and Fergus [9] estimate depth from a
single image. Recently, CNNs are applied on voxel to voxel
prediction problems, such as video coloring [28].

Our approach applies CNNs to model large-scale non-
linear general CFD analysis for a restricted class of flow
conditions. Our method obtains a surrogate model of the
general high-dimensional CFD analysis of arbitrary geom-
etry immersed in a flow for a class of flow conditions, and
not a model based on predetermined low-dimensional inputs.
For this reason, our model subsumes a multitude of lower-
dimensional models, as it only requires training once and can
be interrogated by mapping lower-dimensional problems into
its high-dimensional input space. The main contribution of
our CNN based CFD prediction is to achieve up to two to
four orders of magnitude speedup compared to traditional
Lattice Boltzmann Method (LBM) for CFD analysis at a
cost of low error rates.

3. CONVOLUTIONAL NEURAL NETWORK
SURROGATE MODELS FOR CFD

We propose a computational fluid dynamics surrogate model
based on deep convolutional neural networks (CNNs). CNNs
have been proven successful in geometry representation learn-
ing and per-pixel prediction in images. The other motivation
of adopting CNNs is its memory e�ciency. Memory require-
ment is a bottleneck to build whole velocity field surrogate
models for large geometry shapes. The sparse connectiv-
ity and weight-sharing property of CNNs reduce the GPU
memory cost greatly.

Our surrogate models have three key components. First,
we adopt signed distance functions as a flexible and general
geometric representation for convolutional neural networks.
Second, we use multiple convolutional encoding layers to ex-
tract abstract and high-level geometric representations. Fi-
nally, there are multiple convolutional decoding layers that
map the abstract geometric representations into the compu-
tational fluid dynamics velocity field.

In the rest of this section, we describe the key components
in turn.

3.1 Geometry Representation
Geometry can be represented in multiple ways, such as

boundaries and geometric parameters. However, those rep-
resentations are not e↵ective for neural networks since the
vectors’ semantic meaning varies. In this paper, we use a
Signed Distance Function (SDF) sampled on a Cartesian
grid as the geometry representation. SDF provides a univer-
sal representation for di↵erent geometry shapes and works
e�ciently with neural networks.

Given a discrete representation of a 2D geometry on a
Cartesian grid, in order to compute the signed distance func-
tion, we first create the zero level set, which is a set of points
(i, j) that give the geometry boundary (surface) in a domain
⌦ ⇢ R2:

Z =
�
(i, j) 2 R2 : f(i, j) = 0

(1)

where f is the level set function s.t. f(i, j) = 0 if and only
if (i, j) is on the geometry boundary, f(i, j) < 0 if and only
if (i, j) is inside the geometry and f(i, j) > 0 if and only if
(i, j) is outside the geometry.

Figure 2: A discrete SDF representation of a cir-

cle shape (zero level set) in a 23x14 Cartesian grid.

The circle is shown in white. The magnitude of the

SDF values on the Cartesian grid equals the minimal

distance to the circle.

A signed distance function D(i, j) associated to a level set
function f(i, j) is defined by

D(i, j) = min
(i0,j0)2Z

��(i, j)� (i0, j0)
�� sign(f(i, j)) (2)

D(i, j) is an oriented distance function and it measures the
distance of a given point (i, j) from the nearest boundary of
a closed geometrical shape Z, with the sign determined by
whether (i,j) is inside or outside the shape. Also, every point
outside of the boundary has a value equal to its distance from
the interface (see Figure 2 for a 2D SDF example).
Similarly, given a discrete representation of a 3D geometry

on a Cartesian grid, the signed distance function is

D(i, j, k) = min
(i0,j0,k0)2Z

��(i, j, k)� (i0, j0, k0)
�� sign(f(i, j, k))

(3)
A demonstration of 3D SDF is shown in Figure 3, where
SDF equals to zero on the cube surface. In this paper, we
use the Gudonov Method [14, 25] to compute the signed
distance functions.

Figure 3: Signed distance function for a cube in 3D

domain

The values of SDF on the sampled Cartesian grid not only
provide local geometry details, but also contain additional

Signed Distance Function

LBM imitation

71

Guo, Xiaoxiao, Wei Li, and Francesco Iorio. "Convolutional neural networks for steady flow
approximation." Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. ACM, 2016.

also enable per-pixel predictions in images. For example,
FlowNet [8] predicts the optical flow field from a pair of im-
ages. Eigen, Puhrsch and Fergus [9] estimate depth from a
single image. Recently, CNNs are applied on voxel to voxel
prediction problems, such as video coloring [28].

Our approach applies CNNs to model large-scale non-
linear general CFD analysis for a restricted class of flow
conditions. Our method obtains a surrogate model of the
general high-dimensional CFD analysis of arbitrary geom-
etry immersed in a flow for a class of flow conditions, and
not a model based on predetermined low-dimensional inputs.
For this reason, our model subsumes a multitude of lower-
dimensional models, as it only requires training once and can
be interrogated by mapping lower-dimensional problems into
its high-dimensional input space. The main contribution of
our CNN based CFD prediction is to achieve up to two to
four orders of magnitude speedup compared to traditional
Lattice Boltzmann Method (LBM) for CFD analysis at a
cost of low error rates.

3. CONVOLUTIONAL NEURAL NETWORK
SURROGATE MODELS FOR CFD

We propose a computational fluid dynamics surrogate model
based on deep convolutional neural networks (CNNs). CNNs
have been proven successful in geometry representation learn-
ing and per-pixel prediction in images. The other motivation
of adopting CNNs is its memory e�ciency. Memory require-
ment is a bottleneck to build whole velocity field surrogate
models for large geometry shapes. The sparse connectiv-
ity and weight-sharing property of CNNs reduce the GPU
memory cost greatly.

Our surrogate models have three key components. First,
we adopt signed distance functions as a flexible and general
geometric representation for convolutional neural networks.
Second, we use multiple convolutional encoding layers to ex-
tract abstract and high-level geometric representations. Fi-
nally, there are multiple convolutional decoding layers that
map the abstract geometric representations into the compu-
tational fluid dynamics velocity field.

In the rest of this section, we describe the key components
in turn.

3.1 Geometry Representation
Geometry can be represented in multiple ways, such as

boundaries and geometric parameters. However, those rep-
resentations are not e↵ective for neural networks since the
vectors’ semantic meaning varies. In this paper, we use a
Signed Distance Function (SDF) sampled on a Cartesian
grid as the geometry representation. SDF provides a univer-
sal representation for di↵erent geometry shapes and works
e�ciently with neural networks.

Given a discrete representation of a 2D geometry on a
Cartesian grid, in order to compute the signed distance func-
tion, we first create the zero level set, which is a set of points
(i, j) that give the geometry boundary (surface) in a domain
⌦ ⇢ R2:

Z =
�
(i, j) 2 R2 : f(i, j) = 0

(1)

where f is the level set function s.t. f(i, j) = 0 if and only
if (i, j) is on the geometry boundary, f(i, j) < 0 if and only
if (i, j) is inside the geometry and f(i, j) > 0 if and only if
(i, j) is outside the geometry.

Figure 2: A discrete SDF representation of a cir-

cle shape (zero level set) in a 23x14 Cartesian grid.

The circle is shown in white. The magnitude of the

SDF values on the Cartesian grid equals the minimal

distance to the circle.

A signed distance function D(i, j) associated to a level set
function f(i, j) is defined by

D(i, j) = min
(i0,j0)2Z

��(i, j)� (i0, j0)
�� sign(f(i, j)) (2)

D(i, j) is an oriented distance function and it measures the
distance of a given point (i, j) from the nearest boundary of
a closed geometrical shape Z, with the sign determined by
whether (i,j) is inside or outside the shape. Also, every point
outside of the boundary has a value equal to its distance from
the interface (see Figure 2 for a 2D SDF example).
Similarly, given a discrete representation of a 3D geometry

on a Cartesian grid, the signed distance function is

D(i, j, k) = min
(i0,j0,k0)2Z

��(i, j, k)� (i0, j0, k0)
�� sign(f(i, j, k))

(3)
A demonstration of 3D SDF is shown in Figure 3, where
SDF equals to zero on the cube surface. In this paper, we
use the Gudonov Method [14, 25] to compute the signed
distance functions.

Figure 3: Signed distance function for a cube in 3D

domain

The values of SDF on the sampled Cartesian grid not only
provide local geometry details, but also contain additional

Signed Distance Function

256×128

16×16×128

Conv
128, 16×8

Conv
512, 4×4

x-component
of CFD

1024

FullCon

Deconv
512, 8×8

4×4×512

8×8×512

Deconv
256, 8×4

64×32×256 128×64×32

Deconv
32, 2×2

Deconv
1, 2×2

256×128

8×8×512 64×32×256 128×64×32

256×128

y-component
of CFD

256×128

256×128

32×32×32
15×15×15×32

Conv3D
32, 4×4×4
stride 2

x-component
of CFD

512

FullCon

Deconv3D
128, 3×3×3
stride 1

7×7×7×64

Conv3D
64, 3×3×3
stride 2

Conv3D
128, 3×3×3
stride 2

3×3×3×128

Deconv3D
64, 3×3×3
stride 2

3×3×3×128

Deconv3D
32, 3×3×3
stride 2

7×7×7×64 15×15×15×32

Deconv3D
1, 4×4×4
stride 2

32×32×32

y-component
of CFD

3×3×3×128 7×7×7×64 15×15×15×32 32×32×32

z-component
of CFD

3×3×3×128 7×7×7×64 15×15×15×32 32×32×3232×32×32

32×32×32

32×32×32

Figure 9: (Top) Network architecture for 2D geometry, (Bottom) Network architecture for 3D geometry.

Black cubes/rectangles represent the feature maps. The dimensionalities of feature maps are indicated

below. Brown cubes are for SDF and CFD components. Conv, Conv3D, Deconv and Deconv3D represent

2D/3D convolutions and 2D/3D deconvolutions respectively. The number of filters and the kernel size are

shown below the operations. The strides for 2D convolutional and deconvolutional layers are the same as

kernel sizes. All layers are followed by a rectifier non-linearity except output layers. Arrows indicate the

forward operation directions.

the ones reported by the patch-wise linear regression. The
prediction accuracy advantage comes from the fact that our
CNN models learn a high-level representation of the entire
geometry, while the patch-wise linear regression model only
takes a local region of SDF as input, thus the input infor-
mation may not be su�cient to provide accurate prediction
for the CFD components. The loss of global geometry infor-
mation degrades the prediction accuracy much more for 3D
case because there are two geometry shapes and the global
structure information is even more critical for CFD predic-
tion. Even though a non-patch-wise linear regression model
could also take the entire SDF as input, the number of pa-
rameters would be too large to handle and thus it is not
applicable in practice.

We visualize the CNN’s output in Figure 10 and Figure 11
for understanding of the errors from our model. Figure 10
visualizes the CNN prediction on 2D geometry. We visualize
the LBM ground truth, the CNN prediction and prediction
errors in columns. The shared encoding model’s predictions
are used in generating the CNN’s results. The geometry
shapes are visualized in dark blue. The results show that
the errors are centered on the geometry boundaries, and the
errors are much less than the CFD ground truth. Following
the same column order, in our 3D visualization (Figure 11),
we show three slices of the velocity fields on the X-Y, X-Z
and Y-Z planes.

Data Set Separated Shared PatchLR
2D Type I 1.76% 1.98% 22.86%
Car Type I 11.09% 9.04% 29.03%
2D Type II 3.08% 2.86% 27.66%
Car Type II 15.34% 16.53% 35.96%
3D - 2.69% 334.19%*

Table 2: CFD prediction results of CNNs and patch-

wise linear regression baseline. (*Based on Equation

10, if the error is larger than the true value, then

error is larger than 1.)

5.3 Performance Analysis
The main motivation for our surrogate models is that

CNN prediction of non-uniform steady laminar flow is con-
siderably faster than traditional LBM solvers. Furthermore
CNNs utilize GPU to evaluate the CFD results and the com-
putation overhead per instance could therefore be reduced
by allowing multiple predictions to be executed in parallel.
LBM are well suited to massively parallel architectures,

as each cell in the lattice can be updated independently at
every time step. A widely accepted performance metric for
LBM based solvers is Million Lattice Updates per Second
(MLUPS). For example, if a 2D LBM solver achieves a per-

LBM imitation

71

Guo, Xiaoxiao, Wei Li, and Francesco Iorio. "Convolutional neural networks for steady flow
approximation." Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. ACM, 2016.

also enable per-pixel predictions in images. For example,
FlowNet [8] predicts the optical flow field from a pair of im-
ages. Eigen, Puhrsch and Fergus [9] estimate depth from a
single image. Recently, CNNs are applied on voxel to voxel
prediction problems, such as video coloring [28].

Our approach applies CNNs to model large-scale non-
linear general CFD analysis for a restricted class of flow
conditions. Our method obtains a surrogate model of the
general high-dimensional CFD analysis of arbitrary geom-
etry immersed in a flow for a class of flow conditions, and
not a model based on predetermined low-dimensional inputs.
For this reason, our model subsumes a multitude of lower-
dimensional models, as it only requires training once and can
be interrogated by mapping lower-dimensional problems into
its high-dimensional input space. The main contribution of
our CNN based CFD prediction is to achieve up to two to
four orders of magnitude speedup compared to traditional
Lattice Boltzmann Method (LBM) for CFD analysis at a
cost of low error rates.

3. CONVOLUTIONAL NEURAL NETWORK
SURROGATE MODELS FOR CFD

We propose a computational fluid dynamics surrogate model
based on deep convolutional neural networks (CNNs). CNNs
have been proven successful in geometry representation learn-
ing and per-pixel prediction in images. The other motivation
of adopting CNNs is its memory e�ciency. Memory require-
ment is a bottleneck to build whole velocity field surrogate
models for large geometry shapes. The sparse connectiv-
ity and weight-sharing property of CNNs reduce the GPU
memory cost greatly.

Our surrogate models have three key components. First,
we adopt signed distance functions as a flexible and general
geometric representation for convolutional neural networks.
Second, we use multiple convolutional encoding layers to ex-
tract abstract and high-level geometric representations. Fi-
nally, there are multiple convolutional decoding layers that
map the abstract geometric representations into the compu-
tational fluid dynamics velocity field.

In the rest of this section, we describe the key components
in turn.

3.1 Geometry Representation
Geometry can be represented in multiple ways, such as

boundaries and geometric parameters. However, those rep-
resentations are not e↵ective for neural networks since the
vectors’ semantic meaning varies. In this paper, we use a
Signed Distance Function (SDF) sampled on a Cartesian
grid as the geometry representation. SDF provides a univer-
sal representation for di↵erent geometry shapes and works
e�ciently with neural networks.

Given a discrete representation of a 2D geometry on a
Cartesian grid, in order to compute the signed distance func-
tion, we first create the zero level set, which is a set of points
(i, j) that give the geometry boundary (surface) in a domain
⌦ ⇢ R2:

Z =
�
(i, j) 2 R2 : f(i, j) = 0

(1)

where f is the level set function s.t. f(i, j) = 0 if and only
if (i, j) is on the geometry boundary, f(i, j) < 0 if and only
if (i, j) is inside the geometry and f(i, j) > 0 if and only if
(i, j) is outside the geometry.

Figure 2: A discrete SDF representation of a cir-

cle shape (zero level set) in a 23x14 Cartesian grid.

The circle is shown in white. The magnitude of the

SDF values on the Cartesian grid equals the minimal

distance to the circle.

A signed distance function D(i, j) associated to a level set
function f(i, j) is defined by

D(i, j) = min
(i0,j0)2Z

��(i, j)� (i0, j0)
�� sign(f(i, j)) (2)

D(i, j) is an oriented distance function and it measures the
distance of a given point (i, j) from the nearest boundary of
a closed geometrical shape Z, with the sign determined by
whether (i,j) is inside or outside the shape. Also, every point
outside of the boundary has a value equal to its distance from
the interface (see Figure 2 for a 2D SDF example).
Similarly, given a discrete representation of a 3D geometry

on a Cartesian grid, the signed distance function is

D(i, j, k) = min
(i0,j0,k0)2Z

��(i, j, k)� (i0, j0, k0)
�� sign(f(i, j, k))

(3)
A demonstration of 3D SDF is shown in Figure 3, where
SDF equals to zero on the cube surface. In this paper, we
use the Gudonov Method [14, 25] to compute the signed
distance functions.

Figure 3: Signed distance function for a cube in 3D

domain

The values of SDF on the sampled Cartesian grid not only
provide local geometry details, but also contain additional

Signed Distance Function

256×128

16×16×128

Conv
128, 16×8

Conv
512, 4×4

x-component
of CFD

1024

FullCon

Deconv
512, 8×8

4×4×512

8×8×512

Deconv
256, 8×4

64×32×256 128×64×32

Deconv
32, 2×2

Deconv
1, 2×2

256×128

8×8×512 64×32×256 128×64×32

256×128

y-component
of CFD

256×128

256×128

32×32×32
15×15×15×32

Conv3D
32, 4×4×4
stride 2

x-component
of CFD

512

FullCon

Deconv3D
128, 3×3×3
stride 1

7×7×7×64

Conv3D
64, 3×3×3
stride 2

Conv3D
128, 3×3×3
stride 2

3×3×3×128

Deconv3D
64, 3×3×3
stride 2

3×3×3×128

Deconv3D
32, 3×3×3
stride 2

7×7×7×64 15×15×15×32

Deconv3D
1, 4×4×4
stride 2

32×32×32

y-component
of CFD

3×3×3×128 7×7×7×64 15×15×15×32 32×32×32

z-component
of CFD

3×3×3×128 7×7×7×64 15×15×15×32 32×32×3232×32×32

32×32×32

32×32×32

Figure 9: (Top) Network architecture for 2D geometry, (Bottom) Network architecture for 3D geometry.

Black cubes/rectangles represent the feature maps. The dimensionalities of feature maps are indicated

below. Brown cubes are for SDF and CFD components. Conv, Conv3D, Deconv and Deconv3D represent

2D/3D convolutions and 2D/3D deconvolutions respectively. The number of filters and the kernel size are

shown below the operations. The strides for 2D convolutional and deconvolutional layers are the same as

kernel sizes. All layers are followed by a rectifier non-linearity except output layers. Arrows indicate the

forward operation directions.

the ones reported by the patch-wise linear regression. The
prediction accuracy advantage comes from the fact that our
CNN models learn a high-level representation of the entire
geometry, while the patch-wise linear regression model only
takes a local region of SDF as input, thus the input infor-
mation may not be su�cient to provide accurate prediction
for the CFD components. The loss of global geometry infor-
mation degrades the prediction accuracy much more for 3D
case because there are two geometry shapes and the global
structure information is even more critical for CFD predic-
tion. Even though a non-patch-wise linear regression model
could also take the entire SDF as input, the number of pa-
rameters would be too large to handle and thus it is not
applicable in practice.

We visualize the CNN’s output in Figure 10 and Figure 11
for understanding of the errors from our model. Figure 10
visualizes the CNN prediction on 2D geometry. We visualize
the LBM ground truth, the CNN prediction and prediction
errors in columns. The shared encoding model’s predictions
are used in generating the CNN’s results. The geometry
shapes are visualized in dark blue. The results show that
the errors are centered on the geometry boundaries, and the
errors are much less than the CFD ground truth. Following
the same column order, in our 3D visualization (Figure 11),
we show three slices of the velocity fields on the X-Y, X-Z
and Y-Z planes.

Data Set Separated Shared PatchLR
2D Type I 1.76% 1.98% 22.86%
Car Type I 11.09% 9.04% 29.03%
2D Type II 3.08% 2.86% 27.66%
Car Type II 15.34% 16.53% 35.96%
3D - 2.69% 334.19%*

Table 2: CFD prediction results of CNNs and patch-

wise linear regression baseline. (*Based on Equation

10, if the error is larger than the true value, then

error is larger than 1.)

5.3 Performance Analysis
The main motivation for our surrogate models is that

CNN prediction of non-uniform steady laminar flow is con-
siderably faster than traditional LBM solvers. Furthermore
CNNs utilize GPU to evaluate the CFD results and the com-
putation overhead per instance could therefore be reduced
by allowing multiple predictions to be executed in parallel.
LBM are well suited to massively parallel architectures,

as each cell in the lattice can be updated independently at
every time step. A widely accepted performance metric for
LBM based solvers is Million Lattice Updates per Second
(MLUPS). For example, if a 2D LBM solver achieves a per-

Figure 10: 2D prediction result visualization. The first column shows the magnitude of the LBM ground truth.

The second column shows the magnitude of the CNN prediction. The third column shows the magnitude of

the di↵erence between the CNN prediction and LBM results.

formance of up to 20 MLUPS, it is the equivalent of per-
forming 1000 time steps per second at a resolution of 200
⇥ 100 lattice points. Modern LBM solvers that are algo-
rithmically optimized for GPU hardware can achieve 820
MLUPS [31, 21]. Using MLUPS as the performance metric,
we can estimate the run time of each individual LBM exper-
iment we performed if they had been running at the speed
of the state-of-the-art GPU optimized LBM solvers, which
is approximately 2 seconds. The average time cost per in-
stance results for LBM solvers are summarized in Table 3.

Methods LBM CPU LBM GPU
Time cost 82.64s 2.02s
MLUPS 20.11 820

Table 3: Time of LBM solver on CPU and GPU.

The time results of our CNNs are in Table 4. The time cost
measures the average time to generate the CFD given the
geometry shape’s SDF input. Since CNN based surrogate
models could amortize computational overhead per instance
by predicting multiple instance in parallel. We measure the
average time cost for di↵erent batch sizes. Moreover, we
compare the time cost of the shared encoding and separated
encoding3. First, the results show that the average time
cost decreases significantly as the batch size becomes larger.
Second, the separated encoding takes more time than the
shared encoding on di↵erent batch sizes. The prediction
accuracy of shared and separated encoding architectures is
close, but the shared encoding outperforms the separated
encoding in terms of time cost.

We use the shared encoding CNNs to compute the speedup,

3The time cost of separated encoding measures the total
time of sequential prediction of di↵erent CFD components.

CNN batch size 1 10 100
shared encoding 0.0145s 0.0077s 0.0069s
separated encoding 0.0182s 0.0085s 0.0072s

Table 4: Time of CNN models on GPU.

compared to LBM on CPU and GPU. The speedup results
are summarized in Table 5.

Batch Size Speedup (CPU) Speedup (GPU)
1 5699 139
10 10732 262
100 11977 292

Table 5: Speedup results of our CNN surrogate

models compared to LBM for di↵erent batch sizes.

The speedup results show that (1) GPU accelerated CNN
model achieves up to 12K speedup compared to traditional
LBM solvers running on a single CPU core, (2) the CNN
model achieves up to 292 speedup compared to GPU-accelerated
LBM solver, and (3) the speedup increases as batch size in-
creases because the overtime in using GPU is amortized.

6. FUTURE WORK AND CONCLUSION
Even though for many domains, such as architectural de-

sign, low Reynolds number flows [2] are usually su�cient,
we intend to explore higher Reynolds number flows in the
future, to extend the approach to other areas of design op-
timization.
It would also be worthwhile investigating whether we could

use the results from our approximation models as an initial
setup to warm start high-accuracy CFD simulations. Since
the predictions are fairly close representations of the final,

OpenLB (Karlsrühe) and
« Proprietary LBM solver » (autodesk)

Chemistry
Expensive chemical schemes operate over wide
ranges of input parameters

72

Under review…

Detailed chemistryComposition

T, P

Chemical
source terms

Chemistry
Expensive chemical schemes operate over wide
ranges of input parameters

72

Under review…

Detailed chemistryComposition

T, P

Chemical
source terms

Neural Network

Chemistry
Expensive chemical schemes operate over wide
ranges of input parameters

72

Under review…

Detailed chemistryComposition

T, P

Chemical
source terms

Neural Network

Authors reduced cost of chemical
computation by 100

More importantly…

73

Anything else you can think of!

CONCLUSION

74

You can do it!

75

You can do it!
Machine learning is on the rise…

75

You can do it!
Machine learning is on the rise…

…but Deep learning can be breathtaking. Now is the
time to ride the tide!

75

You can do it!
Machine learning is on the rise…

…but Deep learning can be breathtaking. Now is the
time to ride the tide!

To leverage DL, you need a problem where multi-
scale hierarchy (in time, space…) is important

75

You can do it!
Machine learning is on the rise…

…but Deep learning can be breathtaking. Now is the
time to ride the tide!

To leverage DL, you need a problem where multi-
scale hierarchy (in time, space…) is important

Complex fluid flows are probably good candidates
(e.g. turbulence). Get to work!

75

You can do it!
Machine learning is on the rise…

…but Deep learning can be breathtaking. Now is the
time to ride the tide!

To leverage DL, you need a problem where multi-
scale hierarchy (in time, space…) is important

Complex fluid flows are probably good candidates
(e.g. turbulence). Get to work!

75

If you want to get your hands dirty, just ask!

Tensorflow / Theano already run at CERFACS

How do I start?

76

from keras.layers import Input, Dense, Conv2D, MaxPooling2D, UpSampling2D
from keras.models import Model
from keras import backend as K
from keras.datasets import mnist
import numpy as np

input_img = Input(shape=(28, 28, 1))

x = Conv2D(16, (3, 3), activation='relu', padding='same')(input_img)
x = MaxPooling2D((2, 2), padding='same')(x)
x = Conv2D(8, (3, 3), activation='relu', padding='same')(x)
x = MaxPooling2D((2, 2), padding='same')(x)
x = Conv2D(8, (3, 3), activation='relu', padding='same')(x)
encoded = MaxPooling2D((2, 2), padding='same')(x)

at this point the representation is (4, 4, 8) i.e. 128-dimensional

x = Conv2D(8, (3, 3), activation='relu', padding='same')(encoded)
x = UpSampling2D((2, 2))(x)
x = Conv2D(8, (3, 3), activation='relu', padding='same')(x)
x = UpSampling2D((2, 2))(x)
x = Conv2D(16, (3, 3), activation='relu')(x)
x = UpSampling2D((2, 2))(x)
decoded = Conv2D(1, (3, 3), activation='sigmoid', padding='same')(x)

autoencoder = Model(input_img, decoded)
autoencoder.compile(optimizer='adadelta', loss='binary_crossentropy')

(x_train, _), (x_test, _) = mnist.load_data()

x_train = x_train.astype('float32') / 255.
x_test = x_test.astype('float32') / 255.
x_train = np.reshape(x_train, (len(x_train), 28, 28, 1))
x_test = np.reshape(x_test, (len(x_test), 28, 28, 1))
autoencoder.fit(x_train, x_train,
 epochs=50,
 batch_size=128,
 shuffle=True,
 validation_data=(x_test, x_test))

A fully convolutional
autoencoder: 40 lines of

code

A few lines of python / lua /
java and you’re off

Going further
I have left out a lot of swear
words here: cross-entropy,
backpropagation, dropout,
pooling…

The web has tremendous
amounts of ressources on
the subject. Tutorials, web-
books, videos…

This book is in the library →
(also online)

77

Thanks for coming!
For this talk and more ressources, visit :

78

https://clapeyre.github.io
> Blog

> Ressources for
Deep Learning

Or just come to see
me and we can talk :)

https://clapeyre.github.io

79

