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The hype

Artificial Intelligence (AI) and specifically Deep 
Learning (DL) are exploding


Forrester: 16% of current US jobs replaced by 2025
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New stuff?

1940 1960

Deep 
Learning

2006

« Deep Learning » is not a new idea. It’s a new set of 
techniques, combined with increased computational power
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Same happened to the 
PASCAL Visual Object 
Classes challenge, etc…
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WHAT THE HECK IS DEEP 
LEARNING?
I DID A REGRESSION ONCE. IT’S DEEP LEARNING, RIGHT? 
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Features Mapping 
from features

Representation 
learning

Machine / Deep learning
In
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Deep 
learning

Simple 
Features

More abstract 
features

Mapping 
from features

Hand designed 
features Machine learningMapping 

from features

Deep learning is a subset of Machine learning
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In Deep learning you learn everything.


This is very powerful, but can be very inefficient.

(N very big)
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Under / Overfitting

Human fitting : 
  « Hey, this looks like a 2nd order polynomial » 

CHAPTER 5. MACHINE LEARNING BASICS

parameters than training examples. We have little chance of choosing a solution
that generalizes well when so many wildly different solutions exist. In this example,
the quadratic model is perfectly matched to the true structure of the task so it
generalizes well to new data.
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Figure 5.2: We fit three models to this example training set. The training data was
generated synthetically, by randomly samplingx values and choosing y deterministically
by evaluating a quadratic function. (Left) A linear function fit to the data suffers from
underfitting—it cannot capture the curvature that is present in the data. ( ) ACenter
quadratic function fit to the data generalizes well to unseen points. It does not suffer from
a significant amount of overfitting or underfitting. ( ) A polynomial of degree 9 fit toRight
the data suffers from overfitting. Here we used the Moore-Penrose pseudoinverse to solve
the underdetermined normal equations. The solution passes through all of the training
points exactly, but we have not been lucky enough for it to extract the correct structure.
It now has a deep valley in between two training points that does not appear in the true
underlying function. It also increases sharply on the left side of the data, while the true
function decreases in this area.

So far we have only described changing a model’s capacity by changing the
number of input features it has (and simultaneously adding new parameters
associated with those features). There are in fact many ways of changing a model’s
capacity. Capacity is not determined only by the choice of model. The model
specifies which family of functions the learning algorithm can choose from when
varying the parameters in order to reduce a training objective. This is called the
representational capacity of the model. In many cases, finding the best function
within this family is a very difficult optimization problem. In practice, the learning

algorithm does not actually find the best function, but merely one that significantly
reduces the training error. These additional limitations, such as the imperfection
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N = 1 N = 2 N = Npts
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Figure 5.2: We fit three models to this example training set. The training data was
generated synthetically, by randomly samplingx values and choosing y deterministically
by evaluating a quadratic function. (Left) A linear function fit to the data suffers from
underfitting—it cannot capture the curvature that is present in the data. ( ) ACenter
quadratic function fit to the data generalizes well to unseen points. It does not suffer from
a significant amount of overfitting or underfitting. ( ) A polynomial of degree 9 fit toRight
the data suffers from overfitting. Here we used the Moore-Penrose pseudoinverse to solve
the underdetermined normal equations. The solution passes through all of the training
points exactly, but we have not been lucky enough for it to extract the correct structure.
It now has a deep valley in between two training points that does not appear in the true
underlying function. It also increases sharply on the left side of the data, while the true
function decreases in this area.

So far we have only described changing a model’s capacity by changing the
number of input features it has (and simultaneously adding new parameters
associated with those features). There are in fact many ways of changing a model’s
capacity. Capacity is not determined only by the choice of model. The model
specifies which family of functions the learning algorithm can choose from when
varying the parameters in order to reduce a training objective. This is called the
representational capacity of the model. In many cases, finding the best function
within this family is a very difficult optimization problem. In practice, the learning
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underfitting—it cannot capture the curvature that is present in the data. ( ) ACenter
quadratic function fit to the data generalizes well to unseen points. It does not suffer from
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the data suffers from overfitting. Here we used the Moore-Penrose pseudoinverse to solve
the underdetermined normal equations. The solution passes through all of the training
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underlying function. It also increases sharply on the left side of the data, while the true
function decreases in this area.
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Figure 5.2: We fit three models to this example training set. The training data was
generated synthetically, by randomly samplingx values and choosing y deterministically
by evaluating a quadratic function. (Left) A linear function fit to the data suffers from
underfitting—it cannot capture the curvature that is present in the data. ( ) ACenter
quadratic function fit to the data generalizes well to unseen points. It does not suffer from
a significant amount of overfitting or underfitting. ( ) A polynomial of degree 9 fit toRight
the data suffers from overfitting. Here we used the Moore-Penrose pseudoinverse to solve
the underdetermined normal equations. The solution passes through all of the training
points exactly, but we have not been lucky enough for it to extract the correct structure.
It now has a deep valley in between two training points that does not appear in the true
underlying function. It also increases sharply on the left side of the data, while the true
function decreases in this area.

So far we have only described changing a model’s capacity by changing the
number of input features it has (and simultaneously adding new parameters
associated with those features). There are in fact many ways of changing a model’s
capacity. Capacity is not determined only by the choice of model. The model
specifies which family of functions the learning algorithm can choose from when
varying the parameters in order to reduce a training objective. This is called the
representational capacity of the model. In many cases, finding the best function
within this family is a very difficult optimization problem. In practice, the learning

algorithm does not actually find the best function, but merely one that significantly
reduces the training error. These additional limitations, such as the imperfection
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Figure 5.2: We fit three models to this example training set. The training data was
generated synthetically, by randomly samplingx values and choosing y deterministically
by evaluating a quadratic function. (Left) A linear function fit to the data suffers from
underfitting—it cannot capture the curvature that is present in the data. ( ) ACenter
quadratic function fit to the data generalizes well to unseen points. It does not suffer from
a significant amount of overfitting or underfitting. ( ) A polynomial of degree 9 fit toRight
the data suffers from overfitting. Here we used the Moore-Penrose pseudoinverse to solve
the underdetermined normal equations. The solution passes through all of the training
points exactly, but we have not been lucky enough for it to extract the correct structure.
It now has a deep valley in between two training points that does not appear in the true
underlying function. It also increases sharply on the left side of the data, while the true
function decreases in this area.

So far we have only described changing a model’s capacity by changing the
number of input features it has (and simultaneously adding new parameters
associated with those features). There are in fact many ways of changing a model’s
capacity. Capacity is not determined only by the choice of model. The model
specifies which family of functions the learning algorithm can choose from when
varying the parameters in order to reduce a training objective. This is called the
representational capacity of the model. In many cases, finding the best function
within this family is a very difficult optimization problem. In practice, the learning

algorithm does not actually find the best function, but merely one that significantly
reduces the training error. These additional limitations, such as the imperfection
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Figure 5.2: We fit three models to this example training set. The training data was
generated synthetically, by randomly samplingx values and choosing y deterministically
by evaluating a quadratic function. (Left) A linear function fit to the data suffers from
underfitting—it cannot capture the curvature that is present in the data. ( ) ACenter
quadratic function fit to the data generalizes well to unseen points. It does not suffer from
a significant amount of overfitting or underfitting. ( ) A polynomial of degree 9 fit toRight
the data suffers from overfitting. Here we used the Moore-Penrose pseudoinverse to solve
the underdetermined normal equations. The solution passes through all of the training
points exactly, but we have not been lucky enough for it to extract the correct structure.
It now has a deep valley in between two training points that does not appear in the true
underlying function. It also increases sharply on the left side of the data, while the true
function decreases in this area.

So far we have only described changing a model’s capacity by changing the
number of input features it has (and simultaneously adding new parameters
associated with those features). There are in fact many ways of changing a model’s
capacity. Capacity is not determined only by the choice of model. The model
specifies which family of functions the learning algorithm can choose from when
varying the parameters in order to reduce a training objective. This is called the
representational capacity of the model. In many cases, finding the best function
within this family is a very difficult optimization problem. In practice, the learning

algorithm does not actually find the best function, but merely one that significantly
reduces the training error. These additional limitations, such as the imperfection
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parameters than training examples. We have little chance of choosing a solution
that generalizes well when so many wildly different solutions exist. In this example,
the quadratic model is perfectly matched to the true structure of the task so it
generalizes well to new data.
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Figure 5.2: We fit three models to this example training set. The training data was
generated synthetically, by randomly samplingx values and choosing y deterministically
by evaluating a quadratic function. (Left) A linear function fit to the data suffers from
underfitting—it cannot capture the curvature that is present in the data. ( ) ACenter
quadratic function fit to the data generalizes well to unseen points. It does not suffer from
a significant amount of overfitting or underfitting. ( ) A polynomial of degree 9 fit toRight
the data suffers from overfitting. Here we used the Moore-Penrose pseudoinverse to solve
the underdetermined normal equations. The solution passes through all of the training
points exactly, but we have not been lucky enough for it to extract the correct structure.
It now has a deep valley in between two training points that does not appear in the true
underlying function. It also increases sharply on the left side of the data, while the true
function decreases in this area.
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number of input features it has (and simultaneously adding new parameters
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capacity. Capacity is not determined only by the choice of model. The model
specifies which family of functions the learning algorithm can choose from when
varying the parameters in order to reduce a training objective. This is called the
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underlying function. It also increases sharply on the left side of the data, while the true
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number of input features it has (and simultaneously adding new parameters
associated with those features). There are in fact many ways of changing a model’s
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specifies which family of functions the learning algorithm can choose from when
varying the parameters in order to reduce a training objective. This is called the
representational capacity of the model. In many cases, finding the best function
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Figure 5.3: Typical relationship between capacity and error. Training and test error
behave differently. At the left end of the graph, training error and generalization error
are both high. This is the underfitting regime. As we increase capacity, training error
decreases, but the gap between training and generalization error increases. Eventually,
the size of this gap outweighs the decrease in training error, and we enter the overfitting
regime, where capacity is too large, above the optimal capacity.

models, such as linear regression. Parametric models learn a function described
by a parameter vector whose size is finite and fixed before any data is observed.
Non-parametric models have no such limitation.

Sometimes, non-parametric models are just theoretical abstractions (such as
an algorithm that searches over all possible probability distributions) that cannot
be implemented in practice. However, we can also design practical non-parametric
models by making their complexity a function of the training set size. One example
of such an algorithm is nearest neighbor regression. Unlike linear regression, which
has a fixed-length vector of weights, the nearest neighbor regression model simply
stores the X and y from the training set. When asked to classify a test point x,
the model looks up the nearest entry in the training set and returns the associated
regression target. In other words, ŷ = yi where i = argmin ||Xi,: − ||x 2

2. The
algorithm can also be generalized to distance metrics other than the L2 norm, such
as learned distance metrics ( , ). If the algorithm is allowedGoldberger et al. 2005

to break ties by averaging the yi values for all X i,: that are tied for nearest, then
this algorithm is able to achieve the minimum possible training error (which might
be greater than zero, if two identical inputs are associated with different outputs)
on any regression dataset.

Finally, we can also create a non-parametric learning algorithm by wrapping a
parametric learning algorithm inside another algorithm that increases the number
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parameters than training examples. We have little chance of choosing a solution
that generalizes well when so many wildly different solutions exist. In this example,
the quadratic model is perfectly matched to the true structure of the task so it
generalizes well to new data.
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Figure 5.2: We fit three models to this example training set. The training data was
generated synthetically, by randomly samplingx values and choosing y deterministically
by evaluating a quadratic function. (Left) A linear function fit to the data suffers from
underfitting—it cannot capture the curvature that is present in the data. ( ) ACenter
quadratic function fit to the data generalizes well to unseen points. It does not suffer from
a significant amount of overfitting or underfitting. ( ) A polynomial of degree 9 fit toRight
the data suffers from overfitting. Here we used the Moore-Penrose pseudoinverse to solve
the underdetermined normal equations. The solution passes through all of the training
points exactly, but we have not been lucky enough for it to extract the correct structure.
It now has a deep valley in between two training points that does not appear in the true
underlying function. It also increases sharply on the left side of the data, while the true
function decreases in this area.

So far we have only described changing a model’s capacity by changing the
number of input features it has (and simultaneously adding new parameters
associated with those features). There are in fact many ways of changing a model’s
capacity. Capacity is not determined only by the choice of model. The model
specifies which family of functions the learning algorithm can choose from when
varying the parameters in order to reduce a training objective. This is called the
representational capacity of the model. In many cases, finding the best function
within this family is a very difficult optimization problem. In practice, the learning
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Figure 5.3: Typical relationship between capacity and error. Training and test error
behave differently. At the left end of the graph, training error and generalization error
are both high. This is the underfitting regime. As we increase capacity, training error
decreases, but the gap between training and generalization error increases. Eventually,
the size of this gap outweighs the decrease in training error, and we enter the overfitting
regime, where capacity is too large, above the optimal capacity.

models, such as linear regression. Parametric models learn a function described
by a parameter vector whose size is finite and fixed before any data is observed.
Non-parametric models have no such limitation.

Sometimes, non-parametric models are just theoretical abstractions (such as
an algorithm that searches over all possible probability distributions) that cannot
be implemented in practice. However, we can also design practical non-parametric
models by making their complexity a function of the training set size. One example
of such an algorithm is nearest neighbor regression. Unlike linear regression, which
has a fixed-length vector of weights, the nearest neighbor regression model simply
stores the X and y from the training set. When asked to classify a test point x,
the model looks up the nearest entry in the training set and returns the associated
regression target. In other words, ŷ = yi where i = argmin ||Xi,: − ||x 2

2. The
algorithm can also be generalized to distance metrics other than the L2 norm, such
as learned distance metrics ( , ). If the algorithm is allowedGoldberger et al. 2005

to break ties by averaging the yi values for all X i,: that are tied for nearest, then
this algorithm is able to achieve the minimum possible training error (which might
be greater than zero, if two identical inputs are associated with different outputs)
on any regression dataset.

Finally, we can also create a non-parametric learning algorithm by wrapping a
parametric learning algorithm inside another algorithm that increases the number
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parameters than training examples. We have little chance of choosing a solution
that generalizes well when so many wildly different solutions exist. In this example,
the quadratic model is perfectly matched to the true structure of the task so it
generalizes well to new data.
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Figure 5.2: We fit three models to this example training set. The training data was
generated synthetically, by randomly samplingx values and choosing y deterministically
by evaluating a quadratic function. (Left) A linear function fit to the data suffers from
underfitting—it cannot capture the curvature that is present in the data. ( ) ACenter
quadratic function fit to the data generalizes well to unseen points. It does not suffer from
a significant amount of overfitting or underfitting. ( ) A polynomial of degree 9 fit toRight
the data suffers from overfitting. Here we used the Moore-Penrose pseudoinverse to solve
the underdetermined normal equations. The solution passes through all of the training
points exactly, but we have not been lucky enough for it to extract the correct structure.
It now has a deep valley in between two training points that does not appear in the true
underlying function. It also increases sharply on the left side of the data, while the true
function decreases in this area.

So far we have only described changing a model’s capacity by changing the
number of input features it has (and simultaneously adding new parameters
associated with those features). There are in fact many ways of changing a model’s
capacity. Capacity is not determined only by the choice of model. The model
specifies which family of functions the learning algorithm can choose from when
varying the parameters in order to reduce a training objective. This is called the
representational capacity of the model. In many cases, finding the best function
within this family is a very difficult optimization problem. In practice, the learning

algorithm does not actually find the best function, but merely one that significantly
reduces the training error. These additional limitations, such as the imperfection
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behave differently. At the left end of the graph, training error and generalization error
are both high. This is the underfitting regime. As we increase capacity, training error
decreases, but the gap between training and generalization error increases. Eventually,
the size of this gap outweighs the decrease in training error, and we enter the overfitting
regime, where capacity is too large, above the optimal capacity.

models, such as linear regression. Parametric models learn a function described
by a parameter vector whose size is finite and fixed before any data is observed.
Non-parametric models have no such limitation.

Sometimes, non-parametric models are just theoretical abstractions (such as
an algorithm that searches over all possible probability distributions) that cannot
be implemented in practice. However, we can also design practical non-parametric
models by making their complexity a function of the training set size. One example
of such an algorithm is nearest neighbor regression. Unlike linear regression, which
has a fixed-length vector of weights, the nearest neighbor regression model simply
stores the X and y from the training set. When asked to classify a test point x,
the model looks up the nearest entry in the training set and returns the associated
regression target. In other words, ŷ = yi where i = argmin ||Xi,: − ||x 2

2. The
algorithm can also be generalized to distance metrics other than the L2 norm, such
as learned distance metrics ( , ). If the algorithm is allowedGoldberger et al. 2005

to break ties by averaging the yi values for all X i,: that are tied for nearest, then
this algorithm is able to achieve the minimum possible training error (which might
be greater than zero, if two identical inputs are associated with different outputs)
on any regression dataset.

Finally, we can also create a non-parametric learning algorithm by wrapping a
parametric learning algorithm inside another algorithm that increases the number
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Deep Learning is…

a form of Machine Learning


It specializes in data where the fit function is very 
hard to express (like image processing)

14

Traditional approaches Deep Learning

Manual pre-selection of data 
to concentrate on important 

features

Input the « raw » data, to 
include maximum features



Striking a balance
The full game of Deep Learning is:


to be able to express complex functions to 
represent the features in the raw data


achieve good generalization to new data: avoid 
overfitting
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The full game of Deep Learning is:


to be able to express complex functions to 
represent the features in the raw data


achieve good generalization to new data: avoid 
overfitting
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Machine learning

y = 3x2

y = ax

b + c

y =
NX

i=0

aix
i

Deep learning

Problem: you must guess the function

You don’t need to know it. But 
dangerous: very prone to overfitting!



THE CURSE OF BIG 
DIMENSIONALITY
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Raw data has high dimension

28 x 28 pixel image = 784 
independent dimensions
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Raw data has high dimension

28 x 28 pixel image = 784 
independent dimensions
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256 x 256 pixel image with 3 color 
channels = 196,608 independent 
dimensions!!



High dimension sucks
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High dimension sucks

Very High dimension sucks 
exponentially more
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Example: let’s talk spheres
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Example: let’s talk spheres

= 78.5 % = 52.3 % … ?
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0 (fast) in high dimension

< 10-7
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A high dimensional 
space looks like this…



Samples in High Dimension 

Dimensions Space size Number of 
corners

784 101,888 10236
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Example: 2D images (with 256 levels / channel)



Samples in High Dimension 

Dimensions Space size Number of 
corners

784 101,888 10236

196,608 10473,479 1059,185
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Example: 2D images (with 256 levels / channel)
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« I have a LOT of samples! »
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Samples in High Dimension 
Key take aways in high dimension

« I have a LOT of samples! »
       => No, you don’t. They are very sparse

You are learning a function using no points 
in the middle and almost none in the 
corners… See the problem?
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Machine learning

y = 3x2

y = ax

b + c

y =
NX

i=0

aix
i

Deep learning

This is a case of extreme 
generalization

How do we solve this?



Using prior knowledge

n

n

N = n2
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Using prior knowledge
Classical machine learning (random forest, 
clustering…)


prior = smoothness


Number of examples needed: O(N) 
(several per square)

n

n

N = n2
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Using prior knowledge
Classical machine learning (random forest, 
clustering…)


prior = smoothness


Number of examples needed: O(N) 
(several per square)

Deep neural network: build your own function using prior 
knowledge 

Ex: texture


End result: O(log(N)) points needed!

n

n

N = n2
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The manifold
Let’s take 28x28 images :
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The input space is huge

But we don’t need to 
cover it all

We just need to describe 
the manifold of 
« relevant » points
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Deep Learning Priors
The data is inside a high dimensional space, but 
the manifold of interest is much smaller


The data comes from a composition of features


The features can assemble at several levels of 
hierarchy
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Machine learning

y = 3x2

y = ax

b + c

y =
NX

i=0

aix
i

Deep learning

Wait a minute… you said :
This is not like general machine learning:


you do not specify the fitted function

you only give these « vague » priors

they are enough for the function to focus 
on the manifold of « important » points



ARTIFICIAL NEURAL 
NETWORKS TO THE RESCUE
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« Neural » Networks?
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108 D. H. HUBEL AND T. N. WIESEL
Tungsten micro-electrodes were advanced by a hydraulic micro-electrode positioner

(Hubel, 1957, 1959). In searching for single cortical units the retina was continually stimu-
lated with stationary and moving forms while the electrode was advanced. The unresolved
background activity (see p. 129) served as a guide for determining the optimum stimulus.
This procedure increased the number of cells observed in a penetration, since the sampling
was not limited to spontaneously active units.
In each penetration electrolytic lesions were made at one or more points. When only one

lesion was made, it was generally at the end of an electrode track. Brains were fixed in 10 %
formalin, embedded in celloidin, sectioned at 20 u, and stained with cresyl violet. Lesions
were 50-100 I in diameter, which was small enough to indicate the position of the electrode
tip to the nearest cortical layer. The positions of other units encountered in a cortical pene-
tration were determined by calculating the distance back from the lesion along the track,

Text-fig. 1. Diagram of dorsal aspect of cat's brain, to show entry points of 45
micro-electrode penetrations. The penetrations between the interrupted lines are
those in which cells had their receptive fields in or near area centralis. LG, lateral
gyrus; PLG, post-lateral gyrus. Scale, 1 cm.

using depth readings corresponding to the unit and the lesion. A correction was made for
brain shrinkage, which was estimated by comparing the distance between two lesions,
measured under the microscope, with the distance calculated from depths at which the two
lesions were made. From brain to brain this shrinkage was not constant, so that it was not
possible to apply an average correction for shrinkage to all brains. For tracks marked by
only one lesion it was assumed that the first unit activity was recorded at the boundary of
the first and second layers; any error resulting from this was probably small, since in a number
of penetrations a lesion was made at the point where the first units were encountered, and
these were in the lower first or the upper second layers, or else at the very boundary. The
absence of cell-body records and unresolved background activity as the electrode passed
through subcortical white matter (see Text-fig. 13 and P1. 1) was also helpful in confirming
the accuracy of the track reconstructions.

Hubel, David H., and Torsten N. Wiesel. 
"Receptive fields, binocular interaction and 
functional architecture in the cat's visual 
cortex." The Journal of physiology 160.1 

(1962): 106-154.

Cat brain (sorry…)



« Neural » Networks?
Loosely inspired from 
biological systems
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was not limited to spontaneously active units.
In each penetration electrolytic lesions were made at one or more points. When only one

lesion was made, it was generally at the end of an electrode track. Brains were fixed in 10 %
formalin, embedded in celloidin, sectioned at 20 u, and stained with cresyl violet. Lesions
were 50-100 I in diameter, which was small enough to indicate the position of the electrode
tip to the nearest cortical layer. The positions of other units encountered in a cortical pene-
tration were determined by calculating the distance back from the lesion along the track,

Text-fig. 1. Diagram of dorsal aspect of cat's brain, to show entry points of 45
micro-electrode penetrations. The penetrations between the interrupted lines are
those in which cells had their receptive fields in or near area centralis. LG, lateral
gyrus; PLG, post-lateral gyrus. Scale, 1 cm.

using depth readings corresponding to the unit and the lesion. A correction was made for
brain shrinkage, which was estimated by comparing the distance between two lesions,
measured under the microscope, with the distance calculated from depths at which the two
lesions were made. From brain to brain this shrinkage was not constant, so that it was not
possible to apply an average correction for shrinkage to all brains. For tracks marked by
only one lesion it was assumed that the first unit activity was recorded at the boundary of
the first and second layers; any error resulting from this was probably small, since in a number
of penetrations a lesion was made at the point where the first units were encountered, and
these were in the lower first or the upper second layers, or else at the very boundary. The
absence of cell-body records and unresolved background activity as the electrode passed
through subcortical white matter (see Text-fig. 13 and P1. 1) was also helpful in confirming
the accuracy of the track reconstructions.

Hubel, David H., and Torsten N. Wiesel. 
"Receptive fields, binocular interaction and 
functional architecture in the cat's visual 
cortex." The Journal of physiology 160.1 

(1962): 106-154.

Cat brain (sorry…)
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Figure 1.11: Since the introduction of hidden units, artificial neural networks have doubled
in size roughly every 2.4 years. Biological neural network sizes from ( ).Wikipedia 2015

1. Perceptron ( , , )Rosenblatt 1958 1962

2. Adaptive linear element ( , )Widrow and Hoff 1960

3. Neocognitron (Fukushima 1980, )

4. Early back-propagation network ( , )Rumelhart et al. 1986b

5. Recurrent neural network for speech recognition (Robinson and Fallside 1991, )

6. Multilayer perceptron for speech recognition ( , )Bengio et al. 1991

7. Mean field sigmoid belief network ( , )Saul et al. 1996

8. LeNet-5 ( , )LeCun et al. 1998b

9. Echo state network ( , )Jaeger and Haas 2004

10. Deep belief network ( , )Hinton et al. 2006

11. GPU-accelerated convolutional network ( , )Chellapilla et al. 2006

12. Deep Boltzmann machine (Salakhutdinov and Hinton 2009a, )

13. GPU-accelerated deep belief network ( , )Raina et al. 2009

14. Unsupervised convolutional network ( , )Jarrett et al. 2009

15. GPU-accelerated multilayer perceptron ( , )Ciresan et al. 2010

16. OMP-1 network ( , )Coates and Ng 2011

17. Distributed autoencoder ( , )Le et al. 2012

18. Multi-GPU convolutional network ( , )Krizhevsky et al. 2012

19. COTS HPC unsupervised convolutional network ( , )Coates et al. 2013

20. GoogLeNet ( , )Szegedy et al. 2014a
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Figure 1.10: Initially, the number of connections between neurons in artificial neural
networks was limited by hardware capabilities. Today, the number of connections between
neurons is mostly a design consideration. Some artificial neural networks have nearly as
many connections per neuron as a cat, and it is quite common for other neural networks
to have as many connections per neuron as smaller mammals like mice. Even the human
brain does not have an exorbitant amount of connections per neuron. Biological neural
network sizes from ( ).Wikipedia 2015

1. Adaptive linear element ( , )Widrow and Hoff 1960

2. Neocognitron (Fukushima 1980, )

3. GPU-accelerated convolutional network ( , )Chellapilla et al. 2006

4. Deep Boltzmann machine (Salakhutdinov and Hinton 2009a, )

5. Unsupervised convolutional network ( , )Jarrett et al. 2009

6. GPU-accelerated multilayer perceptron ( , )Ciresan et al. 2010

7. Distributed autoencoder ( , )Le et al. 2012

8. Multi-GPU convolutional network ( , )Krizhevsky et al. 2012

9. COTS HPC unsupervised convolutional network ( , )Coates et al. 2013

10. GoogLeNet ( , )Szegedy et al. 2014a
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(Hubel, 1957, 1959). In searching for single cortical units the retina was continually stimu-
lated with stationary and moving forms while the electrode was advanced. The unresolved
background activity (see p. 129) served as a guide for determining the optimum stimulus.
This procedure increased the number of cells observed in a penetration, since the sampling
was not limited to spontaneously active units.
In each penetration electrolytic lesions were made at one or more points. When only one

lesion was made, it was generally at the end of an electrode track. Brains were fixed in 10 %
formalin, embedded in celloidin, sectioned at 20 u, and stained with cresyl violet. Lesions
were 50-100 I in diameter, which was small enough to indicate the position of the electrode
tip to the nearest cortical layer. The positions of other units encountered in a cortical pene-
tration were determined by calculating the distance back from the lesion along the track,

Text-fig. 1. Diagram of dorsal aspect of cat's brain, to show entry points of 45
micro-electrode penetrations. The penetrations between the interrupted lines are
those in which cells had their receptive fields in or near area centralis. LG, lateral
gyrus; PLG, post-lateral gyrus. Scale, 1 cm.

using depth readings corresponding to the unit and the lesion. A correction was made for
brain shrinkage, which was estimated by comparing the distance between two lesions,
measured under the microscope, with the distance calculated from depths at which the two
lesions were made. From brain to brain this shrinkage was not constant, so that it was not
possible to apply an average correction for shrinkage to all brains. For tracks marked by
only one lesion it was assumed that the first unit activity was recorded at the boundary of
the first and second layers; any error resulting from this was probably small, since in a number
of penetrations a lesion was made at the point where the first units were encountered, and
these were in the lower first or the upper second layers, or else at the very boundary. The
absence of cell-body records and unresolved background activity as the electrode passed
through subcortical white matter (see Text-fig. 13 and P1. 1) was also helpful in confirming
the accuracy of the track reconstructions.

Hubel, David H., and Torsten N. Wiesel. 
"Receptive fields, binocular interaction and 
functional architecture in the cat's visual 
cortex." The Journal of physiology 160.1 

(1962): 106-154.

Cat brain (sorry…)
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Assembling neurons
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Assembling neurons
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Assembling neurons

It’s a 0!

It’s a 2!
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Play around! http://playground.tensorflow.org/
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Is my function a neuron?
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Is my function a neuron?
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y = max(x1w1 + x2w2, 0)
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Is my function a neuron?

Neural nets are just computational graphs


You can represent many (any?) operations with 
neural nets


But it does not mean you are doing deep learning…
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DEEP CLASSIFIERS

32



Example: the MNIST dataset

Large database of 
handwritten digits 
(stored as 28x28 
pixel images)


You recognize 
these instantly…


… but how can we 
build a net that 
recognizes them?

33



A simple neural net
Simple « Multi-Layer 
Perceptron » (MLP)


28x28 = 784 pixels on 
input


0 → 9: 10 outputs


1 hidden layer
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To improve this approach, the neurons can be connected differently



Image filters (Gimp docs)

Image Kernel Result

This is in effect a convolution 
of the image by the filter
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Base
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Edge detection
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Edge detection
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Sharpen
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Sharpen
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Building smarter layers

Fully Connected Layer
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Building smarter layers

Fully Connected Layer

learned 
weights

Shared weights using 
convolution :

You learn the kernel 
weights, then share over 

the full input

40



Deep MNIST

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based learning 
applied to document recognition, Proc. IEEE 86(11): 2278–2324, 1998

LeNet-5 (1998) : ~1% error
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Deep MNIST

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based learning 
applied to document recognition, Proc. IEEE 86(11): 2278–2324, 1998

Best result today: 0.21% error (less than humans!)
Li Wan, Matthew Zeiler, Sixin Zhang, Yann LeCun, Rob Fergus Regularization of Neural 

Network using DropConnect, International Conference on Machine Learning 2013

LeNet-5 (1998) : ~1% error

41



ImageNet

Popular AI challenge: 

- Crowdsourced 
labeling of image 
database (14 million 
labeled images) 

- Competing algorithms 
try to classify them

ImageNet 
classification 

challenge
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Wait, 14 million??

Amazon calls it 
« Human Intelligence 

Tasks »

€ $¥
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Wait, 14 million??

Amazon calls it 
« Human Intelligence 

Tasks »

It’s probably pretty 
boring though…

€ $¥

43



ImageNet
Images are Big Data 
compared to MNIST
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ImageNet
Images are Big Data 
compared to MNIST

AlexNet: ImageNet 
2012 winner
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ImageNet
Images are Big Data 
compared to MNIST

AlexNet: ImageNet 
2012 winner

GoogLeNet: ImageNet 
2014 winner
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How do I use this?

Do not expect to make sense of the function.


GoogleNet (22 layers) = 11,193,984 parameters


ResNet (153 layers) = 25,636,712 parameters


Deep neural classifiers are high performers


But « artificial intelligence » is not just about 
classification! Can it do anything else?
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ARTIFICIAL « INTELLIGENCE »
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« Most of human and animal learning is 
unsupervised learning »

-Yann LeCun
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« Most of human and animal learning is 
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-Yann LeCun

Founding Director of the NYU Center for Data Science
Director of AI research at Facebook

Big deal :
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3 types of learning

Reinforcement learning
Supervised learning

Unsupervised learning

Today

Today

Tomorrow

Time
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Reinforcement learning

Input: a game. Output: the score. No limit 
to the number of playthroughs

The cherry!
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Supervised learning
The icing!

Learn to predict from a finite set of 
labeled data


Example: classifiers


Great, but needs a lot of data…
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Unsupervised learning
The cake!

To teach a child to recognize a cat, he 
doesn’t need to see 1 million cats
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Unsupervised learning
The cake!

To teach a child to recognize a cat, he 
doesn’t need to see 1 million cats

Unsupervised learning

Do you find « similar » 
elements?

Good! That’s called a cat

53



« True » AI is unsupervised

« Intelligent » beings infer relations / classes


They gather unlabeled information at all times


Then learn the names for them quickly
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Unsupervised example: the 
autoencoder

Autoencoder
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Unsupervised example: the 
autoencoder

Autoencoder

High 
dimension

High 
dimension
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Unsupervised example: the 
autoencoder

Success means:

• meaningful features have been extracted at the 

bottleneck without guidance

• they are a low dimensional representation of 

most important features

Autoencoder

High 
dimension

High 
dimension

Low 
dimension
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GREAT. SO HOW DO WE USE IT? 
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GREAT. SO HOW DO WE USE IT? 

GENERATIVE ADVERSARIAL 
NETWORKS
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« Generative Adversarial Networks is the most 
interesting idea in the last ten years in machine 

learning »

-Yann LeCun

The big deal guy
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Classifiers / Regressors

Not a Mona!

It’s a Mona!
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NN

Classifiers / Regressors

Not a Mona!

It’s a Mona!

Can answer a specific question 
= low dimensional output

Cannot generate complex data 
= high dimensional output
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Adverserial generators
real 
data
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Adverserial generators
real 
data

Discriminator 
( classifier )

NN True

Fake

Once trained, the 
generator can create 
« plausible » images

2 Networks (Generator / 
Discriminator) « fight » for 

best result

Generator
NN

noise
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GAN examples

Generated bedroom images
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GAN examples

Realistic images according to CIFAR-10 dataset
61



Pix2Pix: a more useful GAN

Generator
NN

The generator can be 
tweaked to accept an input
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Pix2Pix: a more useful GAN

live test (you draw!) at: https://affinelayer.com/pixsrv/
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SRGAN
Super - Resolution GAN 

Output: 64x64 images (from 
the Large-scale 
CelebFaces 
Attributes dataset) 

Input: degraded 16x16 
image 

GAN learns to reproduce 
« credible » images

16x16

64x64bicubic 
interpolation

SRGAN

64



Google + (RAISR)
https://blog.google/products/google-plus/saving-you-bandwidth-through-machine-learning/
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Google + (RAISR)
https://blog.google/products/google-plus/saving-you-bandwidth-through-machine-learning/
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Style Transfer
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Picasso van Gogh Monnet
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Recurrent NN: 

e.g. LSTM (Long Short-term Memory), a 
convolution over time. Used in speech recognition
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generative model like GANs
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And so many more…

Recurrent NN: 

e.g. LSTM (Long Short-term Memory), a 
convolution over time. Used in speech recognition

Variational Autoencoders: another unsupervised 
generative model like GANs

U-Nets :

etc…
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DEEP LEARNING IN CFD: 
SOME EXAMPLES

68



Post Processing

69

Kutz, J. Nathan. "Deep learning in fluid dynamics." Journal of Fluid Mechanics 814 (2017): 1-4.

POD / DMD Deep Neural 
Networks

Computational speed

Physically interpretable

Ability to capture multi-scale

Invariance by rotation/scaling

Suggestion: propose a dataset for a fluid 
mechanics challenge (like ImageNet)



RANS modelling

Authors compared a simple MLP (not great) with a 
smarter NN accounting for rotational invariance


They obtained excellent predictions (much better 
than a quadratic eddy viscosity model)

70

Ling, Julia, Andrew Kurzawski, and Jeremy Templeton. "Reynolds averaged turbulence modelling using 
deep neural networks with embedded invariance." Journal of Fluid Mechanics 807 (2016): 155-166.

Input: S and R (strain / 
rotation rate tensors) 

Output: Reynolds stress 
anisotropy tensor
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also enable per-pixel predictions in images. For example,
FlowNet [8] predicts the optical flow field from a pair of im-
ages. Eigen, Puhrsch and Fergus [9] estimate depth from a
single image. Recently, CNNs are applied on voxel to voxel
prediction problems, such as video coloring [28].

Our approach applies CNNs to model large-scale non-
linear general CFD analysis for a restricted class of flow
conditions. Our method obtains a surrogate model of the
general high-dimensional CFD analysis of arbitrary geom-
etry immersed in a flow for a class of flow conditions, and
not a model based on predetermined low-dimensional inputs.
For this reason, our model subsumes a multitude of lower-
dimensional models, as it only requires training once and can
be interrogated by mapping lower-dimensional problems into
its high-dimensional input space. The main contribution of
our CNN based CFD prediction is to achieve up to two to
four orders of magnitude speedup compared to traditional
Lattice Boltzmann Method (LBM) for CFD analysis at a
cost of low error rates.

3. CONVOLUTIONAL NEURAL NETWORK
SURROGATE MODELS FOR CFD

We propose a computational fluid dynamics surrogate model
based on deep convolutional neural networks (CNNs). CNNs
have been proven successful in geometry representation learn-
ing and per-pixel prediction in images. The other motivation
of adopting CNNs is its memory e�ciency. Memory require-
ment is a bottleneck to build whole velocity field surrogate
models for large geometry shapes. The sparse connectiv-
ity and weight-sharing property of CNNs reduce the GPU
memory cost greatly.

Our surrogate models have three key components. First,
we adopt signed distance functions as a flexible and general
geometric representation for convolutional neural networks.
Second, we use multiple convolutional encoding layers to ex-
tract abstract and high-level geometric representations. Fi-
nally, there are multiple convolutional decoding layers that
map the abstract geometric representations into the compu-
tational fluid dynamics velocity field.

In the rest of this section, we describe the key components
in turn.

3.1 Geometry Representation
Geometry can be represented in multiple ways, such as

boundaries and geometric parameters. However, those rep-
resentations are not e↵ective for neural networks since the
vectors’ semantic meaning varies. In this paper, we use a
Signed Distance Function (SDF) sampled on a Cartesian
grid as the geometry representation. SDF provides a univer-
sal representation for di↵erent geometry shapes and works
e�ciently with neural networks.

Given a discrete representation of a 2D geometry on a
Cartesian grid, in order to compute the signed distance func-
tion, we first create the zero level set, which is a set of points
(i, j) that give the geometry boundary (surface) in a domain
⌦ ⇢ R2:

Z =
�
(i, j) 2 R2 : f(i, j) = 0

 
(1)

where f is the level set function s.t. f(i, j) = 0 if and only
if (i, j) is on the geometry boundary, f(i, j) < 0 if and only
if (i, j) is inside the geometry and f(i, j) > 0 if and only if
(i, j) is outside the geometry.

Figure 2: A discrete SDF representation of a cir-

cle shape (zero level set) in a 23x14 Cartesian grid.

The circle is shown in white. The magnitude of the

SDF values on the Cartesian grid equals the minimal

distance to the circle.

A signed distance function D(i, j) associated to a level set
function f(i, j) is defined by

D(i, j) = min
(i0,j0)2Z

��(i, j)� (i0, j0)
�� sign(f(i, j)) (2)

D(i, j) is an oriented distance function and it measures the
distance of a given point (i, j) from the nearest boundary of
a closed geometrical shape Z, with the sign determined by
whether (i,j) is inside or outside the shape. Also, every point
outside of the boundary has a value equal to its distance from
the interface (see Figure 2 for a 2D SDF example).
Similarly, given a discrete representation of a 3D geometry

on a Cartesian grid, the signed distance function is

D(i, j, k) = min
(i0,j0,k0)2Z

��(i, j, k)� (i0, j0, k0)
�� sign(f(i, j, k))

(3)
A demonstration of 3D SDF is shown in Figure 3, where
SDF equals to zero on the cube surface. In this paper, we
use the Gudonov Method [14, 25] to compute the signed
distance functions.

Figure 3: Signed distance function for a cube in 3D

domain

The values of SDF on the sampled Cartesian grid not only
provide local geometry details, but also contain additional

Signed Distance Function 
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also enable per-pixel predictions in images. For example,
FlowNet [8] predicts the optical flow field from a pair of im-
ages. Eigen, Puhrsch and Fergus [9] estimate depth from a
single image. Recently, CNNs are applied on voxel to voxel
prediction problems, such as video coloring [28].

Our approach applies CNNs to model large-scale non-
linear general CFD analysis for a restricted class of flow
conditions. Our method obtains a surrogate model of the
general high-dimensional CFD analysis of arbitrary geom-
etry immersed in a flow for a class of flow conditions, and
not a model based on predetermined low-dimensional inputs.
For this reason, our model subsumes a multitude of lower-
dimensional models, as it only requires training once and can
be interrogated by mapping lower-dimensional problems into
its high-dimensional input space. The main contribution of
our CNN based CFD prediction is to achieve up to two to
four orders of magnitude speedup compared to traditional
Lattice Boltzmann Method (LBM) for CFD analysis at a
cost of low error rates.

3. CONVOLUTIONAL NEURAL NETWORK
SURROGATE MODELS FOR CFD

We propose a computational fluid dynamics surrogate model
based on deep convolutional neural networks (CNNs). CNNs
have been proven successful in geometry representation learn-
ing and per-pixel prediction in images. The other motivation
of adopting CNNs is its memory e�ciency. Memory require-
ment is a bottleneck to build whole velocity field surrogate
models for large geometry shapes. The sparse connectiv-
ity and weight-sharing property of CNNs reduce the GPU
memory cost greatly.

Our surrogate models have three key components. First,
we adopt signed distance functions as a flexible and general
geometric representation for convolutional neural networks.
Second, we use multiple convolutional encoding layers to ex-
tract abstract and high-level geometric representations. Fi-
nally, there are multiple convolutional decoding layers that
map the abstract geometric representations into the compu-
tational fluid dynamics velocity field.

In the rest of this section, we describe the key components
in turn.

3.1 Geometry Representation
Geometry can be represented in multiple ways, such as

boundaries and geometric parameters. However, those rep-
resentations are not e↵ective for neural networks since the
vectors’ semantic meaning varies. In this paper, we use a
Signed Distance Function (SDF) sampled on a Cartesian
grid as the geometry representation. SDF provides a univer-
sal representation for di↵erent geometry shapes and works
e�ciently with neural networks.

Given a discrete representation of a 2D geometry on a
Cartesian grid, in order to compute the signed distance func-
tion, we first create the zero level set, which is a set of points
(i, j) that give the geometry boundary (surface) in a domain
⌦ ⇢ R2:

Z =
�
(i, j) 2 R2 : f(i, j) = 0

 
(1)

where f is the level set function s.t. f(i, j) = 0 if and only
if (i, j) is on the geometry boundary, f(i, j) < 0 if and only
if (i, j) is inside the geometry and f(i, j) > 0 if and only if
(i, j) is outside the geometry.

Figure 2: A discrete SDF representation of a cir-

cle shape (zero level set) in a 23x14 Cartesian grid.

The circle is shown in white. The magnitude of the

SDF values on the Cartesian grid equals the minimal

distance to the circle.

A signed distance function D(i, j) associated to a level set
function f(i, j) is defined by

D(i, j) = min
(i0,j0)2Z

��(i, j)� (i0, j0)
�� sign(f(i, j)) (2)

D(i, j) is an oriented distance function and it measures the
distance of a given point (i, j) from the nearest boundary of
a closed geometrical shape Z, with the sign determined by
whether (i,j) is inside or outside the shape. Also, every point
outside of the boundary has a value equal to its distance from
the interface (see Figure 2 for a 2D SDF example).
Similarly, given a discrete representation of a 3D geometry

on a Cartesian grid, the signed distance function is

D(i, j, k) = min
(i0,j0,k0)2Z

��(i, j, k)� (i0, j0, k0)
�� sign(f(i, j, k))

(3)
A demonstration of 3D SDF is shown in Figure 3, where
SDF equals to zero on the cube surface. In this paper, we
use the Gudonov Method [14, 25] to compute the signed
distance functions.

Figure 3: Signed distance function for a cube in 3D

domain

The values of SDF on the sampled Cartesian grid not only
provide local geometry details, but also contain additional
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Figure 9: (Top) Network architecture for 2D geometry, (Bottom) Network architecture for 3D geometry.

Black cubes/rectangles represent the feature maps. The dimensionalities of feature maps are indicated

below. Brown cubes are for SDF and CFD components. Conv, Conv3D, Deconv and Deconv3D represent

2D/3D convolutions and 2D/3D deconvolutions respectively. The number of filters and the kernel size are

shown below the operations. The strides for 2D convolutional and deconvolutional layers are the same as

kernel sizes. All layers are followed by a rectifier non-linearity except output layers. Arrows indicate the

forward operation directions.

the ones reported by the patch-wise linear regression. The
prediction accuracy advantage comes from the fact that our
CNN models learn a high-level representation of the entire
geometry, while the patch-wise linear regression model only
takes a local region of SDF as input, thus the input infor-
mation may not be su�cient to provide accurate prediction
for the CFD components. The loss of global geometry infor-
mation degrades the prediction accuracy much more for 3D
case because there are two geometry shapes and the global
structure information is even more critical for CFD predic-
tion. Even though a non-patch-wise linear regression model
could also take the entire SDF as input, the number of pa-
rameters would be too large to handle and thus it is not
applicable in practice.

We visualize the CNN’s output in Figure 10 and Figure 11
for understanding of the errors from our model. Figure 10
visualizes the CNN prediction on 2D geometry. We visualize
the LBM ground truth, the CNN prediction and prediction
errors in columns. The shared encoding model’s predictions
are used in generating the CNN’s results. The geometry
shapes are visualized in dark blue. The results show that
the errors are centered on the geometry boundaries, and the
errors are much less than the CFD ground truth. Following
the same column order, in our 3D visualization (Figure 11),
we show three slices of the velocity fields on the X-Y, X-Z
and Y-Z planes.

Data Set Separated Shared PatchLR
2D Type I 1.76% 1.98% 22.86%
Car Type I 11.09% 9.04% 29.03%
2D Type II 3.08% 2.86% 27.66%
Car Type II 15.34% 16.53% 35.96%
3D - 2.69% 334.19%*

Table 2: CFD prediction results of CNNs and patch-

wise linear regression baseline. (*Based on Equation

10, if the error is larger than the true value, then

error is larger than 1.)

5.3 Performance Analysis
The main motivation for our surrogate models is that

CNN prediction of non-uniform steady laminar flow is con-
siderably faster than traditional LBM solvers. Furthermore
CNNs utilize GPU to evaluate the CFD results and the com-
putation overhead per instance could therefore be reduced
by allowing multiple predictions to be executed in parallel.
LBM are well suited to massively parallel architectures,

as each cell in the lattice can be updated independently at
every time step. A widely accepted performance metric for
LBM based solvers is Million Lattice Updates per Second
(MLUPS). For example, if a 2D LBM solver achieves a per-
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also enable per-pixel predictions in images. For example,
FlowNet [8] predicts the optical flow field from a pair of im-
ages. Eigen, Puhrsch and Fergus [9] estimate depth from a
single image. Recently, CNNs are applied on voxel to voxel
prediction problems, such as video coloring [28].

Our approach applies CNNs to model large-scale non-
linear general CFD analysis for a restricted class of flow
conditions. Our method obtains a surrogate model of the
general high-dimensional CFD analysis of arbitrary geom-
etry immersed in a flow for a class of flow conditions, and
not a model based on predetermined low-dimensional inputs.
For this reason, our model subsumes a multitude of lower-
dimensional models, as it only requires training once and can
be interrogated by mapping lower-dimensional problems into
its high-dimensional input space. The main contribution of
our CNN based CFD prediction is to achieve up to two to
four orders of magnitude speedup compared to traditional
Lattice Boltzmann Method (LBM) for CFD analysis at a
cost of low error rates.

3. CONVOLUTIONAL NEURAL NETWORK
SURROGATE MODELS FOR CFD

We propose a computational fluid dynamics surrogate model
based on deep convolutional neural networks (CNNs). CNNs
have been proven successful in geometry representation learn-
ing and per-pixel prediction in images. The other motivation
of adopting CNNs is its memory e�ciency. Memory require-
ment is a bottleneck to build whole velocity field surrogate
models for large geometry shapes. The sparse connectiv-
ity and weight-sharing property of CNNs reduce the GPU
memory cost greatly.

Our surrogate models have three key components. First,
we adopt signed distance functions as a flexible and general
geometric representation for convolutional neural networks.
Second, we use multiple convolutional encoding layers to ex-
tract abstract and high-level geometric representations. Fi-
nally, there are multiple convolutional decoding layers that
map the abstract geometric representations into the compu-
tational fluid dynamics velocity field.

In the rest of this section, we describe the key components
in turn.

3.1 Geometry Representation
Geometry can be represented in multiple ways, such as

boundaries and geometric parameters. However, those rep-
resentations are not e↵ective for neural networks since the
vectors’ semantic meaning varies. In this paper, we use a
Signed Distance Function (SDF) sampled on a Cartesian
grid as the geometry representation. SDF provides a univer-
sal representation for di↵erent geometry shapes and works
e�ciently with neural networks.

Given a discrete representation of a 2D geometry on a
Cartesian grid, in order to compute the signed distance func-
tion, we first create the zero level set, which is a set of points
(i, j) that give the geometry boundary (surface) in a domain
⌦ ⇢ R2:

Z =
�
(i, j) 2 R2 : f(i, j) = 0

 
(1)

where f is the level set function s.t. f(i, j) = 0 if and only
if (i, j) is on the geometry boundary, f(i, j) < 0 if and only
if (i, j) is inside the geometry and f(i, j) > 0 if and only if
(i, j) is outside the geometry.

Figure 2: A discrete SDF representation of a cir-

cle shape (zero level set) in a 23x14 Cartesian grid.

The circle is shown in white. The magnitude of the

SDF values on the Cartesian grid equals the minimal

distance to the circle.

A signed distance function D(i, j) associated to a level set
function f(i, j) is defined by

D(i, j) = min
(i0,j0)2Z

��(i, j)� (i0, j0)
�� sign(f(i, j)) (2)

D(i, j) is an oriented distance function and it measures the
distance of a given point (i, j) from the nearest boundary of
a closed geometrical shape Z, with the sign determined by
whether (i,j) is inside or outside the shape. Also, every point
outside of the boundary has a value equal to its distance from
the interface (see Figure 2 for a 2D SDF example).
Similarly, given a discrete representation of a 3D geometry

on a Cartesian grid, the signed distance function is

D(i, j, k) = min
(i0,j0,k0)2Z

��(i, j, k)� (i0, j0, k0)
�� sign(f(i, j, k))

(3)
A demonstration of 3D SDF is shown in Figure 3, where
SDF equals to zero on the cube surface. In this paper, we
use the Gudonov Method [14, 25] to compute the signed
distance functions.

Figure 3: Signed distance function for a cube in 3D

domain

The values of SDF on the sampled Cartesian grid not only
provide local geometry details, but also contain additional
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Figure 9: (Top) Network architecture for 2D geometry, (Bottom) Network architecture for 3D geometry.

Black cubes/rectangles represent the feature maps. The dimensionalities of feature maps are indicated

below. Brown cubes are for SDF and CFD components. Conv, Conv3D, Deconv and Deconv3D represent

2D/3D convolutions and 2D/3D deconvolutions respectively. The number of filters and the kernel size are

shown below the operations. The strides for 2D convolutional and deconvolutional layers are the same as

kernel sizes. All layers are followed by a rectifier non-linearity except output layers. Arrows indicate the

forward operation directions.

the ones reported by the patch-wise linear regression. The
prediction accuracy advantage comes from the fact that our
CNN models learn a high-level representation of the entire
geometry, while the patch-wise linear regression model only
takes a local region of SDF as input, thus the input infor-
mation may not be su�cient to provide accurate prediction
for the CFD components. The loss of global geometry infor-
mation degrades the prediction accuracy much more for 3D
case because there are two geometry shapes and the global
structure information is even more critical for CFD predic-
tion. Even though a non-patch-wise linear regression model
could also take the entire SDF as input, the number of pa-
rameters would be too large to handle and thus it is not
applicable in practice.

We visualize the CNN’s output in Figure 10 and Figure 11
for understanding of the errors from our model. Figure 10
visualizes the CNN prediction on 2D geometry. We visualize
the LBM ground truth, the CNN prediction and prediction
errors in columns. The shared encoding model’s predictions
are used in generating the CNN’s results. The geometry
shapes are visualized in dark blue. The results show that
the errors are centered on the geometry boundaries, and the
errors are much less than the CFD ground truth. Following
the same column order, in our 3D visualization (Figure 11),
we show three slices of the velocity fields on the X-Y, X-Z
and Y-Z planes.

Data Set Separated Shared PatchLR
2D Type I 1.76% 1.98% 22.86%
Car Type I 11.09% 9.04% 29.03%
2D Type II 3.08% 2.86% 27.66%
Car Type II 15.34% 16.53% 35.96%
3D - 2.69% 334.19%*

Table 2: CFD prediction results of CNNs and patch-

wise linear regression baseline. (*Based on Equation

10, if the error is larger than the true value, then

error is larger than 1.)

5.3 Performance Analysis
The main motivation for our surrogate models is that

CNN prediction of non-uniform steady laminar flow is con-
siderably faster than traditional LBM solvers. Furthermore
CNNs utilize GPU to evaluate the CFD results and the com-
putation overhead per instance could therefore be reduced
by allowing multiple predictions to be executed in parallel.
LBM are well suited to massively parallel architectures,

as each cell in the lattice can be updated independently at
every time step. A widely accepted performance metric for
LBM based solvers is Million Lattice Updates per Second
(MLUPS). For example, if a 2D LBM solver achieves a per-

Figure 10: 2D prediction result visualization. The first column shows the magnitude of the LBM ground truth.

The second column shows the magnitude of the CNN prediction. The third column shows the magnitude of

the di↵erence between the CNN prediction and LBM results.

formance of up to 20 MLUPS, it is the equivalent of per-
forming 1000 time steps per second at a resolution of 200
⇥ 100 lattice points. Modern LBM solvers that are algo-
rithmically optimized for GPU hardware can achieve 820
MLUPS [31, 21]. Using MLUPS as the performance metric,
we can estimate the run time of each individual LBM exper-
iment we performed if they had been running at the speed
of the state-of-the-art GPU optimized LBM solvers, which
is approximately 2 seconds. The average time cost per in-
stance results for LBM solvers are summarized in Table 3.

Methods LBM CPU LBM GPU
Time cost 82.64s 2.02s
MLUPS 20.11 820

Table 3: Time of LBM solver on CPU and GPU.

The time results of our CNNs are in Table 4. The time cost
measures the average time to generate the CFD given the
geometry shape’s SDF input. Since CNN based surrogate
models could amortize computational overhead per instance
by predicting multiple instance in parallel. We measure the
average time cost for di↵erent batch sizes. Moreover, we
compare the time cost of the shared encoding and separated
encoding3. First, the results show that the average time
cost decreases significantly as the batch size becomes larger.
Second, the separated encoding takes more time than the
shared encoding on di↵erent batch sizes. The prediction
accuracy of shared and separated encoding architectures is
close, but the shared encoding outperforms the separated
encoding in terms of time cost.

We use the shared encoding CNNs to compute the speedup,

3The time cost of separated encoding measures the total
time of sequential prediction of di↵erent CFD components.

CNN batch size 1 10 100
shared encoding 0.0145s 0.0077s 0.0069s
separated encoding 0.0182s 0.0085s 0.0072s

Table 4: Time of CNN models on GPU.

compared to LBM on CPU and GPU. The speedup results
are summarized in Table 5.

Batch Size Speedup (CPU) Speedup (GPU)
1 5699 139
10 10732 262
100 11977 292

Table 5: Speedup results of our CNN surrogate

models compared to LBM for di↵erent batch sizes.

The speedup results show that (1) GPU accelerated CNN
model achieves up to 12K speedup compared to traditional
LBM solvers running on a single CPU core, (2) the CNN
model achieves up to 292 speedup compared to GPU-accelerated
LBM solver, and (3) the speedup increases as batch size in-
creases because the overtime in using GPU is amortized.

6. FUTURE WORK AND CONCLUSION
Even though for many domains, such as architectural de-

sign, low Reynolds number flows [2] are usually su�cient,
we intend to explore higher Reynolds number flows in the
future, to extend the approach to other areas of design op-
timization.
It would also be worthwhile investigating whether we could

use the results from our approximation models as an initial
setup to warm start high-accuracy CFD simulations. Since
the predictions are fairly close representations of the final,

OpenLB (Karlsrühe) and  
« Proprietary LBM solver » (autodesk)
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from keras.layers import Input, Dense, Conv2D, MaxPooling2D, UpSampling2D
from keras.models import Model
from keras import backend as K
from keras.datasets import mnist
import numpy as np

input_img = Input(shape=(28, 28, 1))

x = Conv2D(16, (3, 3), activation='relu', padding='same')(input_img)
x = MaxPooling2D((2, 2), padding='same')(x)
x = Conv2D(8, (3, 3), activation='relu', padding='same')(x)
x = MaxPooling2D((2, 2), padding='same')(x)
x = Conv2D(8, (3, 3), activation='relu', padding='same')(x)
encoded = MaxPooling2D((2, 2), padding='same')(x)

# at this point the representation is (4, 4, 8) i.e. 128-dimensional

x = Conv2D(8, (3, 3), activation='relu', padding='same')(encoded)
x = UpSampling2D((2, 2))(x)
x = Conv2D(8, (3, 3), activation='relu', padding='same')(x)
x = UpSampling2D((2, 2))(x)
x = Conv2D(16, (3, 3), activation='relu')(x)
x = UpSampling2D((2, 2))(x)
decoded = Conv2D(1, (3, 3), activation='sigmoid', padding='same')(x)

autoencoder = Model(input_img, decoded)
autoencoder.compile(optimizer='adadelta', loss='binary_crossentropy')

(x_train, _), (x_test, _) = mnist.load_data()

x_train = x_train.astype('float32') / 255.
x_test = x_test.astype('float32') / 255.
x_train = np.reshape(x_train, (len(x_train), 28, 28, 1))  
x_test = np.reshape(x_test, (len(x_test), 28, 28, 1))
autoencoder.fit(x_train, x_train,
                epochs=50,
                batch_size=128,
                shuffle=True,
                validation_data=(x_test, x_test))

A fully convolutional 
autoencoder: 40 lines of 

code

A few lines of python / lua / 
java and you’re off



Going further
I have left out a lot of swear 
words here: cross-entropy, 
backpropagation, dropout, 
pooling…


The web has tremendous 
amounts of ressources on 
the subject. Tutorials, web-
books, videos…


This book is in the library → 
(also online)
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Thanks for coming!
For this talk and more ressources, visit :
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https://clapeyre.github.io 
> Blog 

> Ressources for 
Deep Learning

Or just come to see 
me and we can talk :)

https://clapeyre.github.io
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