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INTRODUCTION

✤ The study of combustion noise of realistic flames implies the need of 
confined lean premixed configurations

✤ Confined academic test cases are non dissipative, and can lead to 
thermoacoustic instabilities

✤ Thermoacoustic limit cycles can entirely mask combustion noise 
levels. They must be adressed in order to study combustion noise
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Thermoacoustic

Comb. noise

~ 1 - 10 % P0

~ 0.01 - 1 % P0
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ICS

Impedance Control Machanism (ICS) developped at EM2C
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OPERATING POINT

✤ Test bench maximum target pressure is 2.5 
bars (choked flow)

✤ Indirect combustion noise is strong for 
strong outlet Mach [1][2]

✤ Supersonic outlet is easier to fit numerically : 
no outlet impedance is needed

[2] Duran, I., & Moreau, S. (2013). Solution of the quasi-one-dimensional linearized Euler equations using flow invariants and the Magnus expansion. Journal of Fluid Mechanics, 723, 190-231.

[1] Leyko, M., Nicoud, F., & Poinsot, T. (2009). Comparison of direct and indirect combustion noise mechanisms in a model combustor. AIAA journal, 47(11), 2709-2716.
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P (bars) Tin (K) mfr (g/s) ! Fuel

2.5 300 18 0.9 C3H8

OPERATING POINT

✤ Test bench maximum target pressure is 2.5 
bars (choked flow)
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strong outlet Mach [1][2]
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FLOW SOLVER : AVBP

Nb nodes Nb cells Smallest cell Biggest cell
1 M 5 M 0.5 mm 2 mm
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HELMHOLTZ SOLVER : AVSP [1]
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✤ Mesh is coarser for Helmholtz solver
✤ Since AVSP assumes zero Mach, nozzle is truncated from domain. 

Nozzle impedance is determined using the Magnus expansion as 
described by Duran [1]

✤ Sound speed computed from mean AVBP solution

[1] Selle, L., Benoit, L., Poinsot, T., Nicoud, F., & Krebs, W. (2006). Joint use of compressible large-eddy simulation and Helmholtz solvers for the 
analysis of rotating modes in an industrial swirled burner. Combustion and Flame, 145(1), 194-205.

I - The CESAM-HP setup

[2] Duran, I., & Moreau, S. (2013). Solution of the quasi-one-dimensional linearized Euler equations using flow invariants and the Magnus expansion. 
Journal of Fluid Mechanics, 723, 190-231.
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[2] Duran, I., & Moreau, S. (2013). Solution of the quasi-one-dimensional linearized Euler equations using flow invariants and the Magnus expansion. 
Journal of Fluid Mechanics, 723, 190-231.
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MEAN PRESSURE (AVBP RUN)

✤ AVBP simulations are performed for the chosen operating point

✤ They exhibit a strong instability around 200 Hz :

I - The CESAM-HP setup
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MEAN PRESSURE (AVBP RUN)

I - The CESAM-HP setup

P’ ~ 5% Pmean

Spatial average of pressure over domain
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HEAT RELEASE (AVBP RUN)

q’ ~ 200% qmean

Strong 
nonlinearity

Spatial average of heat release over domain

I - The CESAM-HP setup



CESAM-HP : UNSTEADY SETUP?

I - The CESAM-HP setup

✤ The CESAM-HP setup exhibits a strong instability in primary 
simulations

✤ Many possible means exist to damp this mode : 

✤ impedances,

✤ flame dynamics,

✤ heat losses...



II - CHOKED FLOW ACOUSTICS
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ATMOSPHERIC COMPUTATIONS (ATM)

✤ Often, simple configurations have a pressure outlet (atmosphere)
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CHOKED FLOW COMPUTATIONS (CHO)

✤ Adding a choked nozzle changes the outlet acoustic behavior 
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Au Ab

A⇤

Reference plane

Inlet
u’=0

M > 1
No acoustic 
information

~ u’=0

II - Choked flow acoustics



BASIC TUBE APPROACH TO STABILITY

Flame
(source term)

Inlet Outlet
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BASIC TUBE APPROACH TO STABILITY

Flame
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✤ Chamber is modeled by constant c0 and constant A tube
✤ Inlet / Outlet impedances determine tube modes
✤ Flame (at xf) can either excite or damp these modes
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Flame
(source term)

Inlet Outlet
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✤ Chamber is modeled by constant c0 and constant A tube
✤ Inlet / Outlet impedances determine tube modes
✤ Flame (at xf) can either excite or damp these modes
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✤ Wave equation for the domain [1] :

0 Lxref xf

[1] Poinsot, T., & Veynante, D. (2005). Theoretical and numerical combustion. RT Edwards Incorporated.
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HOMOGENOUS EQUATION

✤ According to inlet/outlet impedances, solutions to the homogenous 
equation :

✤ can be easily derived (for a pressure amplitude of 1) :
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THE ANIMATED MODES

space space

time time

Atm Cho

xref xf xref xf

0 L 0 L

p(xf , t)
u(xref , t)

p(xf , t)
u(xref , t)

u(x, t)

p(x, t)

u(x, t)

p(x, t)
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SOURCE TERM

✤ Classical approach for active flame modeling :
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0 if x 6= xf

✤ where u is measured at xref. Hence :

✤ The Rayleigh criterion then 
predicts unstable conditions if :
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RAYLEIGH CRITERION VS τ
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time time

Rayleigh 
criterion

Rayleigh 
criterion

p(xf , t) · !̇T (t)
!̇T (t)

p(xf , t)
u(xref , t)

p(xf , t)
u(xref , t)

Stable

Unstable Unstable

Stable

""

II - Choked flow acoustics
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PARTIAL CONCLUSION

✦ Small time-delays are 
synonym of instability

✦ Large time-delays are 
synonym of stability
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Unstable

Stable

✤ Instabilities are prone occur in closed choked-flow systems

✤ Relation between time-delay and stability is unusual :

Rayleigh 
criterion

II - Choked flow acoustics



MODE IDENTIFICATION
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p(xf , t)
u(xref , t)
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MODE IDENTIFICATION
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p(xf , t)
u(xref , t)

AVBP
AVSP

CESAM-HP - PRMS1D Approach
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MODE IDENTIFICATION

20

✤ RMS of simulations show similar longitudinal modes

✤ Helmholtz solver finds this mode

p(xf , t)
u(xref , t)

AVBP
AVSP

CESAM-HP - PRMS1D Approach

II - Choked flow acoustics



PLAYING WITH IMPEDANCES

ICS

II - Choked flow acoustics

✤ Could the ICS save us? It’s where PRMS is maximum

✤ Using «compliant walls», impedance at ICS can be drastically reduced



DAMPING STRATEGY : IMPEDANCE

✤ Pressure fluctuations are strong in the cold section
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Idea : «open» impedances in cold section (ICS + inlets) 
using NSCBC compliant wall boundaries

✤ Results ?

II - Choked flow acoustics



DAMPING STRATEGY : IMPEDANCE

22

II - Choked flow acoustics

✤ Pressure fluctuations are still extremely high
✤ «Bulk» mode (constant phase in chamber) resists open impedances

P’ ~ 5% Pmean



WRONG STRATEGY?

✤ The mode responsible for the instability is identified

✤ It exists both in the chamber and in the injection system

✤ Killing pressure oscillations in the injection doesn’t seem to be 
efficient to damp the mode

✤ Next option : work on flame dynamics
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III - TOWARDS A STABLE CONFIGURATION
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LES with 
Nozzle

Initially
Very Unstable

Difficult to 
stabilize

FLAME DYNAMICS
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LES without Nozzle

Quiet mean 
flow Forced runs

Nozzle

Non reflecting
outlet

Mean Temperature

FLAME DYNAMICS

III - Towards a stable configuration
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P’ ~ 0.1% Pmean

MEAN PRESSURE WITHOUT NOZZLE

III - Towards a stable configuration

Spatial average of pressure over domain
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FLAME DYNAMICS

III - Towards a stable configuration
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Stabilized
no-nozzle
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Stabilized
no-nozzle Frequency similar to
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Pressure forcing
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Stabilized
no-nozzle Frequency similar to

full run instability

Pressure forcing

Global value of n and ! extracted

Flame Transfer Function
tools applied to simulation

Helmholtz solver : AVSP

Stability map according to values of n, !
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FLAME DYNAMICS

III - Towards a stable configuration

✤ Acoustic solver also predicts instability

✤ Stability map suggests to increase !

✤ This methodology agrees with the 1D 
tube analysis
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FLAME DYNAMICS
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Objective : increase !

III - Towards a stable configuration

FLAME DYNAMICS

[1] Metghalchi, M., & Keck, J. C. (1982). Burning velocities of mixtures of air with methanol, isooctane, and indolene at high pressure and temperature.Combustion and Flame, 48, 191-210.
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Objective : increase !

Idea : lower flame 
speed sL
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FLAME DYNAMICS
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FLAME DYNAMICS

III - Towards a stable configuration

Spatial average of pressure over domain
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FLAME DYNAMICS

III - Towards a stable configuration

q’ ~ 50% qmean

Weak 
nonlinearity

Spatial average of heat release over domain
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CONCLUSION
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✤ Thermoacoustic instabilities are prone to hinder the study of 
combustion noise in realistic academic configurations;

✤ The control of these instabilities cannot be done through usual 
academic means developped for atmospheric outlet setups;

✤ Nor can it be done using damping devices, as the complexity of 
industrial chamber dampers exceeds academic possibilities.

✤ A fine analysis of the specific thermoacoustic dynamics is necessary to 
achieve reasonable stability. It has not yet been shown however that it 
is enough.


