IMPORTANCE OF THERMOACOUSTICS IN LES OF COMBUSTION NOISE IN REALISTIC CONFINED CONDITIONS Corentin Lapeyre - PhD Student, CERFACS - DISCERN ANR

MAMBO Workshop - ONERA Châtillon

October 18th, 2013

INTRODUCTION

- The study of combustion noise of realistic flames implies the need of confined lean premixed configurations
- Confined academic test cases are non dissipative, and can lead to thermoacoustic instabilities
- Thermoacoustic limit cycles can entirely mask combustion noise levels. They must be adressed in order to study combustion noise

Thermoacoustic	~ 1 - 10 % P ₀
Comb. noise	~ 0.01 - 1 % P ₀

I - THE CESAM-HP SETUP

Impedance Control Machanism (ICS) developped at EM2C

OPERATING POINT

- Test bench maximum target pressure is 2.5 bars (choked flow)
- Indirect combustion noise is strong for strong outlet Mach [1][2]
- Supersonic outlet is easier to fit numerically : no outlet impedance is needed

[1] Leyko, M., Nicoud, F., & Poinsot, T. (2009). Comparison of direct and indirect combustion noise mechanisms in a model combustor. AIAA journal, 47(11), 2709-2716. [2] Duran, I., & Moreau, S. (2013). Solution of the quasi-one-dimensional linearized Euler equations using flow invariants and the Magnus expansion. Journal of Fluid Mechanics, 723, 190-231.

OPERATING POINT

- Test bench maximum target pressure is 2.5 bars (choked flow)
- Indirect combustion noise is strong for strong outlet Mach [1][2]
- Supersonic outlet is easier to fit numerically : no outlet impedance is needed

[2] Duran, I., & Moreau, S. (2013). Solution of the quasi-one-dimensional linearized Euler equations using flow invariants and the Magnus expansion. Journal of Fluid Mechanics, 723, 190-231.

OPERATING POINT

- Test bench maximum target pressure is 2.5 bars (choked flow)
- Indirect combustion noise is strong for strong outlet Mach [1][2]
- Supersonic outlet is easier to fit numerically : no outlet impedance is needed

P (bars)	Tin (K)	mfr (g/s)	φ	Fuel
2.5	300	18	0.9	C_3H_8

[1] Leyko, M., Nicoud, F., & Poinsot, T. (2009). Comparison of direct and indirect combustion noise mechanisms in a model combustor. AIAA journal, 47(11), 2709-2716.

[2] Duran, I., & Moreau, S. (2013). Solution of the quasi-one-dimensional linearized Euler equations using flow invariants and the Magnus expansion. Journal of Fluid Mechanics, 723, 190-231.

FLOW SOLVER : AVBP

Nb nodes	Nb cells	Smallest cell	Biggest cell
1 M	5 M	0.5 mm	2 mm

FLOW SOLVER : AVBP

HELMHOLTZ SOLVER : AVSP [1]

- Mesh is coarser for Helmholtz solver
- Since AVSP assumes *zero Mach*, nozzle is truncated from domain. Nozzle impedance is determined using the Magnus expansion as described by Duran [1]
- Sound speed computed from mean AVBP solution

[1] Selle, L., Benoit, L., Poinsot, T., Nicoud, F., & Krebs, W. (2006). Joint use of compressible large-eddy simulation and Helmholtz solvers for the analysis of rotating modes in an industrial swirled burner. Combustion and Flame, 145(1), 194-205.

[2] Duran, I., & Moreau, S. (2013). Solution of the quasi-one-dimensional linearized Euler equations using flow invariants and the Magnus expansion. Journal of Fluid Mechanics, 723, 190-231.

HELMHOLTZ SOLVER : AVSP [1]

- Mesh is coarser for Helmholtz solver
- Since AVSP assumes *zero Mach*, nozzle is truncated from domain. Nozzle impedance is determined using the Magnus expansion as described by Duran [1]
- Sound speed computed from mean AVBP solution

Mean sound speed

[1] Selle, L., Benoit, L., Poinsot, T., Nicoud, F., & Krebs, W. (2006). Joint use of compressible large-eddy simulation and Helmholtz solvers for the analysis of rotating modes in an industrial swirled burner. Combustion and Flame, 145(1), 194-205.

[2] Duran, I., & Moreau, S. (2013). Solution of the quasi-one-dimensional linearized Euler equations using flow invariants and the Magnus expansion. Journal of Fluid Mechanics, 723, 190-231.

MEAN PRESSURE (AVBP RUN)

- AVBP simulations are performed for the chosen operating point
- * They exhibit a strong instability around 200 Hz :

I - The CESAM-HP setup

MEAN PRESSURE (AVBP RUN)

Spatial average of pressure over domain

HEAT RELEASE (AVBP RUN)

Spatial average of heat release over domain

CESAM-HP : UNSTEADY SETUP?

- The CESAM-HP setup exhibits a strong instability in primary simulations
- * Many possible means exist to damp this mode :
 - impedances,
 - flame dynamics,
 - heat losses...

II - CHOKED FLOW ACOUSTICS

ATMOSPHERIC COMPUTATIONS (ATM)

* Often, simple configurations have a pressure outlet (atmosphere)

ATMOSPHERIC COMPUTATIONS (ATM)

* Often, simple configurations have a pressure outlet (atmosphere)

CHOKED FLOW COMPUTATIONS (CHO)

Adding a choked nozzle changes the outlet acoustic behavior

BASIC TUBE APPROACH TO STABILITY

BASIC TUBE APPROACH TO STABILITY

- Chamber is modeled by constant c₀ and constant A tube
- Inlet / Outlet impedances determine tube modes
- * Flame (at x_f) can either excite or damp these modes

BASIC TUBE APPROACH TO STABILITY

- Chamber is modeled by constant c₀ and constant A tube
- Inlet / Outlet impedances determine tube modes
- * Flame (at x_f) can either excite or damp these modes
- * Wave equation for the domain [1] :

$$\frac{\partial^2 p}{\partial t^2} - c_0^2 \frac{\partial^2 p}{\partial x^2} = (\gamma - 1) \frac{\partial \dot{\omega}_T}{\partial t}$$

HOMOGENOUS EQUATION

 According to inlet/outlet impedances, solutions to the homogenous equation :

$$\frac{\partial^2 p_h}{\partial t^2} - c_0^2 \frac{\partial^2 p_h}{\partial x^2} = 0$$

* can be easily derived (for a pressure amplitude of 1):

Atm (p'=0 outlet)	$p_h(x,t) = \cos\left(\frac{\pi}{2}\frac{x}{L}\right)\cos(\omega t)$ $u_h(x,t) = \frac{1}{\rho c}\sin\left(\frac{\pi}{2}\frac{x}{L}\right)\sin(\omega t)$	$\omega = \frac{\pi c}{2L}$
Cho (u'=0 outlet)	$p_h(x,t) = \cos\left(\pi\frac{x}{L}\right)\cos(\omega t)$ $u_h(x,t) = \frac{1}{\rho c}\sin\left(\pi\frac{x}{L}\right)\sin(\omega t)$	$\omega = \frac{\pi c}{L}$

II - Choked flow acoustics

THE ANIMATED MODES

Source term

* Classical approach for active flame modeling :

$$\frac{\gamma - 1}{\gamma p_0} \dot{\omega}_T = \begin{cases} A \ n \ u(t - \tau) & \text{if } x = x_f \\ 0 & \text{if } x \neq x_f \end{cases}$$

* where u is measured at x_{ref}. Hence :

$$\frac{\partial^2 p}{\partial t^2} - c_0^2 \frac{\partial^2 p}{\partial x^2} = \begin{cases} C \ \frac{\partial}{\partial t} u(x_{ref}, t - \tau) & \text{if } x = x_f \\ 0 & \text{if } x \neq x_f \end{cases}$$

* The Rayleigh criterion then predicts unstable conditions if : $\int \int \int_{\Omega} p(x,t) \dot{\omega}_T(x,t) d\Omega > 0$ II - Choked flow acoustics

RAYLEIGH CRITERIONVS T

PARTIAL CONCLUSION

- * Instabilities are prone occur in closed choked-flow systems
- * Relation between time-delay and stability is unusual :

- *Small* time-delays are synonym of *instability*
- *Large* time-delays are synonym of *stability*

MODE IDENTIFICATION

MODE IDENTIFICATION

1D Approach

CESAM-HP - P_{RMS}

MODE IDENTIFICATION

1D Approach

CESAM-HP - P_{RMS}

- RMS of simulations show similar longitudinal modes
- Helmholtz solver finds this mode

PLAYING WITH IMPEDANCES

- * Could the ICS save us? It's where P_{RMS} is maximum
- * Using «compliant walls», impedance at ICS can be drastically reduced

DAMPING STRATEGY : IMPEDANCE

Pressure fluctuations are strong in the cold section

Idea : «open» impedances in cold section (ICS + inlets) using NSCBC compliant wall boundaries

Results ?

DAMPING STRATEGY : IMPEDANCE

- Pressure fluctuations are still extremely high
- «Bulk» mode (constant phase in chamber) resists open impedances 22

WRONG STRATEGY?

- * The mode responsible for the instability is identified
- * It exists both in the chamber and in the injection system
- Killing pressure oscillations in the injection doesn't seem to be efficient to damp the mode
- Next option : work on flame dynamics

III - TOWARDS A STABLE CONFIGURATION

LES with Nozzle

Initially Very Unstable

Difficult to stabilize

Quiet mean flow

Forced runs

LES without Nozzle

Quiet mean flow

Forced runs

Non reflecting outlet

Nozle

Mean Temperature

MEAN PRESSURE WITHOUT NOZZLE

Stabilized no-nozzle

28

Pressure forcing

Frequency similar to full run instability

- Acoustic solver also predicts instability
- * Stability map suggests to increase τ

This methodology agrees with the 1D tube analysis

- Acoustic solver also predicts instability
- * Stability map suggests to increase τ

This methodology agrees with the 1D tube analysis

<u>Objective</u> : increase τ

<u>Objective</u> : increase τ

<u>Idea</u> : lower flame speed s_L

[1] Metghalchi, M., & Keck, J. C. (1982). Burning velocities of mixtures of air with methanol, isooctane, and indolene at high pressure and temperature. Combustion and Flame, 48, 191-210.

Initially Very Unstable

Difficult to stabilize

Smart guess at more stable point

Iterate

32

STRATEGY OVERVIEW

STRATEGY OVERVIEW

STRATEGY OVERVIEW

CONCLUSION

CONCLUSION

- Thermoacoustic instabilities are prone to hinder the study of combustion noise in realistic academic configurations;
- The control of these instabilities cannot be done through usual academic means developped for atmospheric outlet setups;
- Nor can it be done using damping devices, as the complexity of industrial chamber dampers exceeds academic possibilities.
- * A fine analysis of the specific thermoacoustic dynamics is necessary to achieve reasonable stability. It has not yet been shown however that it is enough.