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INTRODUCTION

* The study of combustion noise of realistic flames implies the need of
confined lean premixed configurations

* Confined academic test cases are non dissipative, and can lead to
thermoacoustic instabilities

* Thermoacoustic limit cycles can entirely mask combustion noise
levels. They must be adressed in order to study combustion noise

Thermoacoustic ~1-10% Py

Comb. noise ~0.01-1% Py
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I - The CESAM-HP setup

OPERATING POINT

* Test bench maximum target pressure is 2.5

bars (choked flow)

* Indirect combustion noise is strong for
strong outlet Mach [1][2]

* Supersonic outlet is easier to fit numerically :
no outlet impedance is needed

[1] Leyko, M., Nicoud, F., & Poinsot, T. (2009). Comparison of direct and indirect combustion noise mechanisms in a model combustor. AIAA journal, 47(11), 2709-2716. 5

[2] Duran, I., & Moreau, S. (2013). Solution of the quasi-one-dimensional linearized Euler equations using flow invariants and the Magnus expansion. Journal of Fluid Mechanics, 723, 190-231.
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F1.OW SOILVER : AVBP

Nb nodes Nb cells  Smallest cell  Biggest cell

\‘VA “ AN AT v

AT «’nﬂw(&' Ay A VAN AT, ‘VA" AL
ATAYA m ‘ gAY . AN
ow & "GN Ul o A W \ \VAVAV S V » Wb N 4=
: "':13%“‘»' ‘5';5‘“ % Az 0‘ o nad'y :t\‘lvi "u »‘ X ik
e | 4L RESy S T N1\, / a
0 2y ;A'tv ~a N (’ \/ V 4’ Y . Uay, k " ﬂ T -v;:;"« 7
: 4. ‘F ‘r »
A

'»
JA? —— AV O A \/ oY, ¥
:".‘\V i, ‘»‘NQR;» NI Y)Ah“( K .4""’:-':.
o 7 Wk SN A vy AV, 7, o
! ¥ ‘ v AQ\ A
/ \ | '451 - 3
VAVA<§v'(
q‘y th'
'A\ “,‘;v v\‘)
4 wr .l'.
1\"«»“\ o
<N t' v% "’v
» ‘ TN S Bar. ,.w"
VSO W, {:’;"“ f_»é‘\;'.' T 5‘
-

Y > A : ,‘\:,‘,
X 9 éh“'”””‘ 2E "g'a'»‘"'..:.‘ o

\ S
S TAY
\/\/

4

PR e
R e a

AN PR s \;‘% R 2
44‘;\ "Ed ““) AL e

SaviR Y
e TR Ny =¥ 1 G ‘4»" i VA‘ a«# % A‘ ““"‘"“
S o D z,viﬁq;d%;;; 2 AR o
IR S ‘ak 'A")A&Ie:':‘; X ‘!g’ ;‘ A \'&Y ("
VATAYA P~/ | » A
3 Vi !A}I" <7 s N P N SR
TAY ‘;

‘ v NS ) A7 LA
v ) Aw e - \
RN EAIAT AN 47 RO N\ b [N
) J - '5151 AT, \g

f‘. g .gﬁ‘ ‘,'&hym

o
.

.uv.‘n VXN

N 2&
AT JAAA ‘\4-“ )

A Y



I - The CESAM-HP setup

HELMHOLTZ SOLVER : AVSP |1

+ Mesh is coarser for Helmholtz solver

* Since AVSP assumes zero Mach, nozzle is truncated from domain.

Nozzle impedance is determined using the Magnus expansion as
described by Duran [1]

* Sound speed computed from mean AVBP solution

[1] Selle, L., Benoit, L., Poinsot, T., Nicoud, F., & Krebs, W. (2006). Joint use of compressible large-eddy simulation and Helmholtz solvers for the
analysis of rotating modes in an industrial swirled burner. Combustion and Flame, 145(1), 194-205.

[2] Duran, I., & Moreau, S. (2013). Solution of the quasi-one-dimensional linearized Euler equations using flow invariants and the Magnus expansion. Z
Journal of Fluid Mechanics, 723, 190-231.
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MEAN PRESSURE (AVBP RUN)

* AVBP simulations are performed for the chosen operating point

* They exhibit a strong instability around 200 Hz :
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MEAN PRESSURE (AVBP RUN
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CESAM-HP : UNSTEADY SETUP?

* The CESAM-HP setup exhibits a strong instability in primary
simulations

* Many possible means exist to damp this mode :
* impedances,
* flame dynamics,

+ heat losses...
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+ Often, simple configurations have a pressure outlet (atmosphere)
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a%o
CHOKED FLOW COMPUTATIONS (GHO)

* Adding a choked nozzle changes the outlet acoustic behavior

No acoustic
.............................. information

>k
Inlet %

J

=0
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BASIC TUBE APPROACH TO STABILITY
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BASIC TUBE APPROACH TO STABILITY

0 Xref Xf L

=)

ke Reference Flame Ottt
plane (source term)

=)

* Chamber is modeled by constant cp and constant A tube
* Inlet / Outlet impedances determine tube modes

* Flame (at x¢) can either excite or damp these modes

* Wave equation for the domain [1] :

6227 9 aQP
737 S S led s

14

[1] Poinsot, T., & Veynante, D. (2005). Theoretical and numerical combustion. RT Edwards Incorporated.
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HOMOGENOUS EQUATION

* According to inlet/outlet impedances, solutions to the homogenous
equation :
2 2
0°ph 2 0°Ph

Ot? 0 ox2 :

* can be easily derived (for a pressure amplitude of 1) :

(z,1) (7T x) (wt)
L — COS | —— ) cosS\WwW
Atm Ll 2L 5
]_ W = ——
\P/:;\/ ;\/Ll‘['_&‘"[\ Uh(ZB,t) = ESZTL (g%) Sm(wt) 2L
X
Chc pr(z,t) = cos (Wz) cos(wt) =
Wk
SRS (1) = csin (n ) sin(wt)
4% L 15
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1THE ANIMATED MODES
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b2
SOURCE TERM

0 Xref Xf L
| | L5

* Classical approach for active flame modeling :

v—1. AR G R
Wt — A
VDo 0 it 45 == J5

* where u is measured at Xref. Hence :

82p 282p {C c’?t (:l?ref,t—T) i 55 = 401

e —

o2 %

* The Rayleigh criterion then / / / p(x, t)wr(z,t)dQ > 0
Q)

predicts unstable conditions if : =
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RAYLEIGH CRITERIONVS T

_ dJT(t)
— p(xy,t) - wr(t)
= Atm Pa=d) =0 ChO =9

___ Rayleigh ___ Rayleigh
criterion i criterion i
Unstable
Stable I I
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PARTIAL CONCLUSION

* Instabilities are prone occur in closed choked-flow systems

* Relation between time-delay and stability is unusual :

+ Small time-delays are _ — Rayleh]
synonym of instability Unstable

+ Large time-delays are _ Stable _
synonym of stability

19
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MODE IDENTIFICATION

20



II - Choked flow acoustics [
CERFLC)

MODE IDENTIFICATION

1D Approach CESAM-HP - Prums
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MODE IDENTIFICATION

1D Approach CESAM-HP - Prums

* RMS of simulations show similar longitudinal modes

+ Helmholtz solver finds this mode -
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PLAYING WITH IMPEDANCES

AL

o

T T

i e

+ Could the ICS save us? It's where Prys is maximum

* Using «compliant walls», impedance at ICS can be drastically reduced



DAMPING STRATEGY : IMPEDANCE

* Pressure fluctuations are strong in the cold section

Idea : «open» impedances in cold section (ICS + inlets)
using NSCBC compliant wall boundaries

+* Results ?

22
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DAMPING STRATEGY : IMPEDANCE
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* Pressure fluctuations are still extremely high

* «Bulk» mode (constant phase in chamber) resists open impedances
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WRONG STRATEGY?

* The mode responsible for the instability is identified
* It exists both in the chamber and in the injection system

+ Killing pressure oscillations in the injection doesn’t seem to be
efficient to damp the mode

* Next option : work on flame dynamics

28
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FLAME DYNAMICS
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MEAN PRESSURE WITHOUT NOZZLE
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FLAME DYNAMICS
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FLAME DYNAMICS

- P forci
Stabilized ressure forcing

no-nozzle Frequency similar to

full run instability
Flame Transfer Function
tools applied to simulation

Global value of n and Tt extracted

Helmholtz solver : AVSP

Stability map according to values of n, t
. 28
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FLAME DYNAMICS
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FLAME DYNAMICS

Objective : increase t

[1] Metghalchi, M., & Keck, J. C. (1982). Burning velocities of mixtures of air with methanol, isooctane, and indolene at high pressure and temperature.Combustion and Flame, 48, 191-210.
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FLAME DYNAMICS

Objective : increase t

Idea : lower flame
speed sr

[1] Metghalchi, M., & Keck, J. C. (1982). Burning velocities of mixtures of air with methanol, isooctane, and indolene at high pressure and temperature.Combustion and Flame, 48, 191-210.
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FLAME DYNAMICS

D : Flame speed vs ¢ [1]
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[1] Metghalchi, M., & Keck, J. C. (1982). Burning velocities of mixtures of air with methanol, isooctane, and indolene at high pressure and temperature.Combustion and Flame, 48, 191-210.
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FLAME DYNAMICS

D : Flame speed vs ¢ [1]
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FLAME DYNAMICS

Spatial average of pressure over domain

280000

| ) y 3 ’ ) P09
Ph 0.77

270000 |

260000 | l | I

250000 | |

Pressure (Pa)

240000 L

—

230000 L 'J

220000 L

210000

1 1 1 1 1
0 0.05 01 0.15 02 025 0.3 32
time (s)



III - Towards a stable configuration

FLAME DYNAMICS

Spatial average of heat release over domain
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STRATEGY OVERVIEW
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STRATEGY OVERVIEW

Any ¢ I
No Nozzle
o =0.77
Nozzle

0 1,25

P”/PO (%)

205

Nozzle

S5

Assess
noise

Silent

Too strong ek

Quiet LES
without nozzle

Study

combustion
Helmholtz noise

analysis
34



CONCLUSION




CERFAO)

z
CONCLUSION

* Thermoacoustic instabilities are prone to hinder the study of
combustion noise in realistic academic configurations;

* The control of these instabilities cannot be done through usual
academic means developped for atmospheric outlet setups;

* Nor can it be done using damping devices, as the complexity of
industrial chamber dampers exceeds academic possibilities.

* A fine analysis of the specific thermoacoustic dynamics is necessary to
achieve reasonable stability. It has not yet been shown however that it
is enough.
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